Skip to main content

Advertisement

Log in

Antifungal drug resistance of oral fungi

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samaranayake LP, Keung Leung W, Jin L. Oral mucosal fungal infections. Periodontology 2000 2009;49:39–59.

    Article  PubMed  Google Scholar 

  2. Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med 1999;10:359–383.

    Article  PubMed  Google Scholar 

  3. Cannon RD, Holmes AR, Mason AB, Monk BC. Oral Candida: clearance, colonization, or candidiasis? J Dent Res 1995;74:1152–1161.

    Article  PubMed  Google Scholar 

  4. de Repentigny L, Lewandowski D, Jolicoeur P. Immunopathogenesis of oropharyngeal candidiasis in human immunodeficiency virus infection. Clin Microbiol Rev 2004;17:729–759.

    Article  PubMed  Google Scholar 

  5. Davies AN, Brailsford SR, Beighton D. Oral candidosis in patients with advanced cancer. Oral Oncol 2006;42:698–702.

    Article  PubMed  Google Scholar 

  6. Pfaller MA, Pappas PG, Wingard JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 2006;43:S3–S14.

    Article  Google Scholar 

  7. Sanglard D, Bille J. Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. In: Calderone RA, editor. Candida and Candidiasis. Washington, DC: ASM Press; 2002. p. 349–383

    Google Scholar 

  8. Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 2005;43:285–318.

    Article  PubMed  Google Scholar 

  9. Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet 2002;359:1135–1144.

    Article  PubMed  Google Scholar 

  10. Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 2009;22:291–321.

    Article  PubMed  Google Scholar 

  11. Hojo K, Nagaoka S, Ohshima T, Maeda N. Bacterial interactions in dental biofilm development. J Dent Res 2009;88:982–990.

    Article  PubMed  Google Scholar 

  12. Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review. Oral Dis 2008;14:582–590.

    Article  PubMed  Google Scholar 

  13. ten Cate JM, Klis FM, Pereira-Cenci T, Crielaard W, de Groot PW. Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 2009;88:105–115.

    Article  PubMed  Google Scholar 

  14. Keijser BJ, Zaura E, Huse SM, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 2008;87:1016–1020.

    Article  PubMed  Google Scholar 

  15. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721–5732.

    Article  PubMed  Google Scholar 

  16. Paster BJ, Boches SK, Galvin JL, et al. Bacterial diversity in human subgingival plaque. J Bacteriol 2001;183:3770–3783.

    Article  PubMed  Google Scholar 

  17. Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 2008;14:908–934.

    Article  PubMed  Google Scholar 

  18. Sakamoto M, Umeda M, Benno Y. Molecular analysis of human oral microbiota. J Periodont Res 2005;40:277–285.

    Article  PubMed  Google Scholar 

  19. Siqueira JF Jr, Rocas IN. Exploiting molecular methods to explore endodontic infections: Part 1. Current molecular technologies for microbiological diagnosis. J Endod 2005;31:411–423.

    Article  PubMed  Google Scholar 

  20. Sivakumar VG, Shankar P, Nalina K, Menon T. Use of CHRO-Magar in the differentiation of common species of Candida. Mycopathologia 2009;167:47–49.

    Article  PubMed  Google Scholar 

  21. Odds FC, Bernaerts R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J Clin Microbiol 1994;32:1923–1929.

    PubMed  Google Scholar 

  22. Sullivan D, Coleman D. Candida dubliniensis: characteristics and identification. J Clin Microbiol 1998;36:329–334.

    PubMed  Google Scholar 

  23. Williams DW, Lewis MA. Isolation and identification of Candida from the oral cavity. Oral Dis 2000;6:3–11.

    Article  PubMed  Google Scholar 

  24. Richardson MD, Carlson P. Culture- and non-culture-based diagnostics for Candida species. In: Calderone R, editor. Candida and candidiasis. Washington, DC: ASM Press; 2002. p. 387–394.

    Google Scholar 

  25. Liguori G, Di Onofrio V, Lucariello A, et al. Oral candidiasis: a comparison between conventional methods and multiplex polymerase chain reaction for species identification. Oral Microbiol Immunol 2009;24:76–78.

    Article  PubMed  Google Scholar 

  26. Wall-Manning GM, Sissons CH, Anderson SA, Lee M. Checkerboard DNA-DNA hybridisation technology focused on the analysis of gram-positive cariogenic bacteria. J Microbiol Methods 2002;51:301–311.

    Article  PubMed  Google Scholar 

  27. do Nascimento C, Ferreira de Albuquerque R Jr, Issa JP, et al. Use of the DNA checkerboard hybridization method for detection and quantitation of Candida species in oral microbiota. Can J Microbiol 2009;55:622–626.

    Article  PubMed  Google Scholar 

  28. Davies AN, Brailsford S, Broadley K, Beighton D. Oral yeast carriage in patients with advanced cancer. Oral Microbiol Immunol 2002;17:79–84.

    Article  PubMed  Google Scholar 

  29. Liguori G, Lucariello A, Colella G, De Luca A, Marinelli P. Rapid identification of Candida species in oral rinse solutions by PCR. J Clin Pathol 2007;60:1035–1039.

    Article  PubMed  Google Scholar 

  30. White PL, Williams DW, Kuriyama T, et al. Detection of Candida in concentrated oral rinse cultures by real-time PCR. J Clin Microbiol 2004;42:2101–2107.

    Article  PubMed  Google Scholar 

  31. Odds FC. Candida and candidiasis. Second edn. London: Baillière Tindall; 1988.

    Google Scholar 

  32. Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 1995;141:1507–1521.

    Article  PubMed  Google Scholar 

  33. Sullivan DJ, Moran GP, Coleman DC. Candida dubliniensis: ten years on. FEMS Microbiol Lett 2005;253:9–17.

    Article  PubMed  Google Scholar 

  34. Arendorf TM, Walker DM. The prevalence and intra-oral distribution of Candida albicans in man. Arch Oral Biol 1980;25:1–10.

    Article  PubMed  Google Scholar 

  35. Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99–116.

    Article  PubMed  Google Scholar 

  36. Schaeken MJ, Creugers TJ, Van der Hoeven JS. Relationship between dental plaque indices and bacteria in dental plaque and those in saliva. J Dent Res 1987;66:1499–1502.

    PubMed  Google Scholar 

  37. Sekino S, Ramberg P, Uzel NG, Socransky S, Lindhe J. Effect of various chlorhexidine regimens on salivary bacteria and de novo plaque formation. J Clin Periodontol 2003;30:919–925.

    Article  PubMed  Google Scholar 

  38. Cannon RD, Firth NA. Fungi and fungal infections of the oral cavity. In: Lamont RJ, Burne RA, Lantz MS, LeBlanc DJ, editors. Oral microbiology and immunology. Washington, DC: ASM Press; 2006. p. 333–348.

    Google Scholar 

  39. Baccaglini L, Atkinson JC, Patton LL, et al. Management of oral lesions in HIV-positive patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(suppl S50):e1–23.

    Google Scholar 

  40. Ship JA, Vissink A, Challacombe SJ. Use of prophylactic antifungals in the immunocompromised host. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(suppl S6):e1–14.

    Google Scholar 

  41. Pereira-Cenci T, Del Bel Cury AA, Crielaard W, Ten Cate JM. Development of Candida-associated denture stomatitis: new insights. J Appl Oral Sci 2008;16:86–94.

    Article  PubMed  Google Scholar 

  42. Loeffler J, Stevens DA. Antifungal drug resistance. Clin Infect Dis 2003;36:S31–41.

    Article  PubMed  Google Scholar 

  43. Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev 1999;12:40–79.

    PubMed  Google Scholar 

  44. Douglas CM. Fungal beta(1,3)-d-glucan synthesis. Med Mycol 2001;39(suppl 1):55–66.

    PubMed  Google Scholar 

  45. Gomez-Lopez A, Garcia-Effron G, Mellado E, et al. In vitro activities of three licensed antifungal agents against Spanish clinical isolates of Aspergillus spp. Antimicrob Agents Chemother 2003;47:3085–3088.

    Article  PubMed  Google Scholar 

  46. Steinbach WJ, Benjamin DK Jr, Kontoyiannis DP, et al. Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin Infect Dis 2004;39:192–198.

    Article  PubMed  Google Scholar 

  47. Steinbach WJ, Perfect JR, Schell WA, Walsh TJ, Benjamin DK Jr. In vitro analyses, animal models, and 60 clinical cases of invasive Aspergillus terreus infection. Antimicrob Agents Chemother 2004;48:3217–3225.

    Article  PubMed  Google Scholar 

  48. Chamilos G, Kontoyiannis DP. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus. Drug Resist Update 2005;8:344–358.

    Article  Google Scholar 

  49. Walsh TJ, Petraitis V, Petraitiene R, et al. Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis 2003;188:305–319.

    Article  PubMed  Google Scholar 

  50. Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 1997;400:80–82.

    Article  PubMed  Google Scholar 

  51. Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 2008;46:120–128.

    Article  PubMed  Google Scholar 

  52. Saag MS, Graybill RJ, Larsen RA, et al. Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 2000;30:710–718.

    Article  PubMed  Google Scholar 

  53. Douglas CM, D’Ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-d-glucan synthase inhibitors. Antimicrob Agents Chemother 1997;41:2471–2479.

    PubMed  Google Scholar 

  54. Kurtz MB, Abruzzo G, Flattery A, et al. Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun 1996;64:3244–3251.

    PubMed  Google Scholar 

  55. Douglas CM, Marrinan JA, Li W, Kurtz MB. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-d-glucan synthase. J Bacteriol 1994;176:5686–5696.

    PubMed  Google Scholar 

  56. Baixench MT, Aoun N, Desnos-Ollivier M, et al. Acquired resistance to echinocandins in Candida albicans: case report and review. J Antimicrob Chemother 2007;59:1076–1083.

    Article  PubMed  Google Scholar 

  57. Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Update 2007;10:121–130.

    Article  Google Scholar 

  58. Cowen LE, Steinbach WJ. Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. Eukaryot Cell 2008;7:747–764.

    Article  PubMed  Google Scholar 

  59. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998;11:382–402.

    PubMed  Google Scholar 

  60. Marichal P, Koymans L, Willemsens S, et al. Contribution of mutations in the cytochrome P450 14-alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 1999;145:2701–2713.

    PubMed  Google Scholar 

  61. Perea S, Lopez-Ribot JL, Kirkpatrick WR, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virusinfected patients. Antimicrob Agents Chemother 2001;45:2676–2684.

    Article  PubMed  Google Scholar 

  62. Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14-alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 1998;42:241–253.

    Article  PubMed  Google Scholar 

  63. Albertson GD, Niimi M, Cannon RD, Jenkinson HF. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 1996;40:2835–2841.

    PubMed  Google Scholar 

  64. Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science 1996;274:546–567.

    Article  PubMed  Google Scholar 

  65. Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins. Nat Genet 1997;15:137–145.

    Article  PubMed  Google Scholar 

  66. Taglicht D, Michaelis S. Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Methods Enzymol 1998;292:130–162.

    Article  PubMed  Google Scholar 

  67. Gaur M, Choudhury D, Prasad R. Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans. J Mol Microbiol Biotechnol 2005;9:3–15.

    Article  PubMed  Google Scholar 

  68. Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature (Lond) 2004;430:35–44.

    Article  Google Scholar 

  69. Nierman WC, Pain A, Anderson MJ, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature (Lond) 2005;438:1151–1156.

    Article  Google Scholar 

  70. Loftus BJ, Fung E, Roncaglia P, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 2005;307:1321–1324.

    Article  PubMed  Google Scholar 

  71. Liu TT, Znaidi S, Barker KS, et al. Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot Cell 2007;6:2122–2138.

    Article  PubMed  Google Scholar 

  72. Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 2003;47:1220–1227.

    Article  PubMed  Google Scholar 

  73. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1997;41:1482–1487.

    PubMed  Google Scholar 

  74. Bennett JE, Izumikawa K, Marr KA. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 2004;48:1773–1777.

    Article  PubMed  Google Scholar 

  75. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 1999;43:2753–2765.

    PubMed  Google Scholar 

  76. Posteraro B, Sanguinetti M, Sanglard D, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol 2003;47:357–371.

    Article  PubMed  Google Scholar 

  77. Sanguinetti M, Posteraro B, La Sorda M, et al. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun 2006;74:1352–1359.

    Article  PubMed  Google Scholar 

  78. Katiyar SK, Edlind TD. Identification and expression of multidrug resistance-related ABC transporter genes in Candida krusei. Med Mycol 2001;39:109–116.

    PubMed  Google Scholar 

  79. Lamping E, Ranchod A, Nakamura K, et al. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Antimicrob Agents Chemother 2009;53:354–369.

    Article  PubMed  Google Scholar 

  80. Arnaud MB, Costanzo MC, Skrzypek MS, et al. Sequence resources at the Candida Genome Database. Nucleic Acids Res 2007;35:D452–D456.

    Article  PubMed  Google Scholar 

  81. Kohli A, Gupta V, Krishnamurthy S, Hasnain SE, Prasad R. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. J Biosci 2001;26:333–339.

    Article  PubMed  Google Scholar 

  82. Nakamura K, Niimi M, Niimi K, et al. Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother 2001;45:3366–3374.

    Article  PubMed  Google Scholar 

  83. Franz R, Kelly SL, Lamb DC, et al. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 1998;42:3065–3072.

    PubMed  Google Scholar 

  84. Sullivan DJ, Moran GP, Pinjon E, et al. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res 2004;4:369–376.

    Article  PubMed  Google Scholar 

  85. Holmes AR, Lin YH, Niimi K, et al. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 2008;52:3851–3862.

    Article  PubMed  Google Scholar 

  86. Holmes AR, van der Wielen P, Cannon RD, Ruske D, Dawes P. Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;102:488–494.

    Article  PubMed  Google Scholar 

  87. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev 2004;17:255–267.

    Article  PubMed  Google Scholar 

  88. Elving GJ, van der Mei HC, Busscher HJ, van Weissenbruch R, Albers FW. Comparison of the microbial composition of voice prosthesis biofilms from patients requiring frequent versus infrequent replacement. Ann Otol Rhinol Laryngol 2002;111:200–203.

    PubMed  Google Scholar 

  89. Cannon RD, Nand AK, Jenkinson HF. Adherence of Candida albicans to human salivary components adsorbed to hydroxylapatite. Microbiology 1995;141:213–219.

    Article  PubMed  Google Scholar 

  90. Holmes AR, Bandara BM, Cannon RD. Saliva promotes Candida albicans adherence to human epithelial cells. J Dent Res 2002;81:28–32.

    Article  PubMed  Google Scholar 

  91. Jenkinson HF, Lala HC, Shepherd MG. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun 1990;58:1429–1436.

    PubMed  Google Scholar 

  92. O’sullivan JM, Cannon RD, Sullivan PA, Jenkinson HF. Identification of salivary basic proline-rich proteins as receptors for Candida albicans adhesion. Microbiology 1997;143(pt 2):341–348.

    Article  PubMed  Google Scholar 

  93. O’sullivan JM, Jenkinson HF, Cannon RD. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 2000;146(pt 1):41–48.

    PubMed  Google Scholar 

  94. Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 2006;5:1604–1610.

    Article  PubMed  Google Scholar 

  95. Zhao X, Daniels KJ, Oh SH, et al. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 2006;152:2287–2299.

    Article  PubMed  Google Scholar 

  96. Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2006;2:e63.

    Article  PubMed  Google Scholar 

  97. Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 2001;67:2982–2992.

    Article  PubMed  Google Scholar 

  98. Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 2002;49:973–980.

    Article  PubMed  Google Scholar 

  99. Alem MA, Oteef MD, Flowers TH, Douglas LJ. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 2006;5:1770–1779.

    Article  PubMed  Google Scholar 

  100. Bamford CV, d’Mello A, Nobbs AH, et al. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 2009;77:3696–3704.

    Article  PubMed  Google Scholar 

  101. Hogan DA, Vik A, Kolter R. A Pseudomonas aeruginosa quorumsensing molecule influences Candida albicans morphology. Mol Microbiol 2004;54:1212–1223.

    Article  PubMed  Google Scholar 

  102. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol 2003;11:30–36.

    Article  PubMed  Google Scholar 

  103. Ramage G, Vande Walle K, Wickes BL, Lopez-Ribot JL. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 2001;45:2475–2479.

    Article  PubMed  Google Scholar 

  104. Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998;42:1900–1905.

    PubMed  Google Scholar 

  105. Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001;183:5385–5394.

    Article  PubMed  Google Scholar 

  106. Mateus C, Crow SA Jr, Ahearn DG. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother 2004;48:3358–3366.

    Article  PubMed  Google Scholar 

  107. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 2003;71:4333–4340.

    Article  PubMed  Google Scholar 

  108. Perumal P, Mekala S, Chaffin WL. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 2007;51:2454–2463.

    Article  PubMed  Google Scholar 

  109. Won Song J, Shin JH, Kee SJ, et al. Expression of CgCDR1, CgCDR2, and CgERG11 in Candida glabrata biofilms formed by bloodstream isolates. Med Mycol 2008;2008:1–4.

    Google Scholar 

  110. Garcia-Sanchez S, Aubert S, Iraqui I, et al. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 2004;3:536–545.

    Article  PubMed  Google Scholar 

  111. Andes D, Nett J, Oschel P, et al. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 2004;72:6023–6031.

    Article  PubMed  Google Scholar 

  112. Cannon RD, Lamping E, Holmes AR, et al. Candida albicans drug resistance another way to cope with stress. Microbiology 2007;153:3211–3217.

    Article  PubMed  Google Scholar 

  113. Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 2006;55:999–1008.

    Article  PubMed  Google Scholar 

  114. Nett J, Lincoln L, Marchillo K, et al. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007;51:510–520.

    Article  PubMed  Google Scholar 

  115. Nobile CJ, Nett JE, Hernday AD, et al. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 2009;7:e1000133.

    Article  PubMed  Google Scholar 

  116. LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 2006;50:3839–3846.

    Article  PubMed  Google Scholar 

  117. Bachmann SP, VandeWalle K, Ramage G, et al. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 2002;46:3591–3596.

    Article  PubMed  Google Scholar 

  118. Lazzell AL, Chaturvedi AK, Pierce CG, et al. Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother 2009;64:567–570.

    Article  PubMed  Google Scholar 

  119. Shuford JA, Rouse MS, Piper KE, Steckelberg JM, Patel R. Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis 2006;194:710–713.

    Article  PubMed  Google Scholar 

  120. Jain N, Kohli R, Cook E, et al. Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl Environ Microbiol 2007;73:1697–1703.

    Article  PubMed  Google Scholar 

  121. Torosantucci A, Chiani P, Bromuro C, et al. Protection by antibeta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One 2009;4:e5392.

    Article  PubMed  Google Scholar 

  122. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 2007;5:418–430.

    Article  PubMed  Google Scholar 

  123. Uppuluri P, Nett J, Heitman J, Andes D. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 2008;52:1127–1132.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Cannon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niimi, M., Firth, N.A. & Cannon, R.D. Antifungal drug resistance of oral fungi. Odontology 98, 15–25 (2010). https://doi.org/10.1007/s10266-009-0118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-009-0118-3

Key words

Navigation