Skip to main content

α1-Adrenergic signaling mechanisms in contraction of resistance arteries

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 150))

Abstract

Our goal in this review is to provide a comprehensive, integrated view of the numerous signaling pathways that are activated by α1-adrenoceptors and control actin-myosin interactions (i.e., crossbridge cycling and force generation) in mammalian arterial smooth muscle. These signaling pathways may be categorized broadly as leading either to thick (myosin) filament regulation or to thin (actin) filament regulation. Thick filament regulation encompasses both “Ca2+ activation” and “Ca2+-sensitization” as it involves both activation of myosin light chain kinase (MLCK) by Ca2+-calmodulin and regulation of myosin light chain phosphatase (MLCP) activity. With respect to Ca2+ activation, adrenergically induced Ca2+ transients in individual smooth muscle cells of intact arteries are now being shown by high resolution imaging to be sarcoplasmic reticulum-dependent asynchronous propagating Ca2+ waves. These waves differ from the spatially uniform increases in [Ca2+] previously assumed. Similarly, imaging during adrenergic activation has revealed the dynamic translocation, to membranes and other subcellular sites, of protein kinases (e.g., Ca2+-activated protein kinases, PKCs) that are involved in regulation of MLCP and thus in “Ca2+ sensitization” of contraction. Thin filament regulation includes the possible disinhibition of actin-myosin interactions by phosphorylation of CaD, possibly by mitogen-activated protein (MAP) kinases that are also translocated during adrenergic activation. An hypothesis for the mechanisms of adrenergic activation of small arteries is advanced. This involves asynchronous Ca2+ waves in individual SMC, synchronous Ca2+ oscillations (at high levels of adrenergic activation), Ca2+ sparks, “Ca2+-sensitization” by PKC and Rho-associated kinase (ROK), and thin filament mechanisms.

The French version of this article is available in the form of electronic supplementary material and can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s10254-003-0019-8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

2-APB:

2-Aminoethoxydiphenylborate

ABS-1:

Actin binding sequence no. 1

BK:

Large conductance potassium channel

CaD:

Caldesmon

CaM:

Calmodulin

CaMKinase II:

Calmodulin kinase II

CaP:

Calponin

CICR:

Ca2+-induced Ca2+ release

CPA:

Cyclopiazonic acid

CPI-17:

Protein kinase C-potentiated 17 kDa inhibitor protein

2,4-DCB:

2,4-Dichlorobenzamil

DAG:

Diacylglycerol

DHP:

Dihydropyridine

DOG:

1,2-Dioctanoyl-sn-glycerol

ERK:

Extracellular-regulated kinase

FDS:

Frequent discharge sites

FRAP:

Fluorescence recovery after photobleaching

FRET:

Fluorescence resonance energy transfer

GEF:

Guanine nucleotide exchange factor

GS17C:

Fluorophore peptide antagonist of caldesmon

HA-1077:

1-(5-Isoquinolinesulfonyl)homopiperazine, Di-HCl Salt

IICR:

InsP3−induced Ca2+ release

ILK:

Integrin-linked kinase

InsP3R:

1,4,5-Trisphosphate receptor

IVC:

Inferior vena cava

jCaTs:

Junctional calcium transients

LC20:

20,000 Da light chain of smooth muscle myosin

M20:

Small noncatalytic subunit of myosin phosphatase

M130:

Large noncatalytic subunit of myosin phosphatase

MAP kinase:

Mitogen-activated protein kinase

MEK:

MAPK kinase

ML-9:

1-(5-Chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride

MLCK:

Myosin light chain kinase

MLCP:

Myosin light chain phosphatase

MLC20 :

Myosin light chain 20

MP:

Myosin phosphatase

MYPT1:

Targeting subunit of myosin phosphatase

NCX:

Na/Ca exchanger

NE:

Norepinephrine

p160ROCK:

A rho kinase

PAK:

P21-activated kinase

PE:

Phenylephrine

PGF2α:

Prostaglandin factor 2α

PKC:

Protein kinase C

PKC-α:

Protein kinase C-α

PKN:

Rho effector, protein kinase C-related kinase

PL:

Plasmalemma

PLC:

Phospholipase C

PL-jSR:

Plasmalemma-junctional sarcoplasmic reticulum

PMA:

Phorbol 12-myristate 13-acetate

PP1c:

Catalytic subunit of myosin phosphatase

PSF:

Point spread function

PMCA:

Plasmalemma Ca2+ pumping ATPase

PM-SR:

Plasma membrane-sarcoplasmic reticulum

ROK:

Rho-associated kinase

RYR:

Ryanodine receptor

SBB:

Superficial buffer barrier

SERCA:

Sarcoplasmic reticulum Ca2+ ATPase

Ser/Thr:

Serine/threonine

SMC:

Smooth muscle cell

SMPP-1M:

Smooth muscle phosphatase-1M

SOC:

Store-operated channels

SR:

Sarcoplasmic reticulum

STOCs:

Spontaneous transient outward currents

TnI:

Inhibitory subunit troponin I

TPEN:

N,N,N′N′-tetrakis (2-pyridylmethyl) ethylenediamine

Tyr:

Tyrosine

UTP:

Uridine 5′-triphosphate

VSMC:

Vascular smooth muscle cells

ZIP kinase:

Zipper interacting protein kinase

References

  • Abe J, Baines CP, Berk BC (2000) Role of mitogen-activated protein kinases in ischemia and reperfusion injury: the good and the bad. Circ Res 86:607–609

    PubMed  CAS  Google Scholar 

  • Abraham ST, Benscoter H, Schworer CM, Singer HA (1997) A role for Ca2+/calmoduin-dependent protein kinase II in the mitogen-activated protein kinase signaling cascade of cultured rat aortic vascular smooth muscle cells. Circ Res 81:575–584

    PubMed  CAS  Google Scholar 

  • Aburto T, Jinsi A, Zhu Q, Deth RC (1995) Involvement of protein kinase C activation in α2-adrenoceptor-mediated contractions of rabbit saphenous vein. Eur J Pharmacol 277:35–44

    PubMed  CAS  Google Scholar 

  • Adam LP, Graceffa P, Haeberle JR (1997) Caldesmon’s effects on actin filament motility, in vitro, are reversed by phosphorylation with MAPK (abstract). Biophys J 72:A176:216

    Google Scholar 

  • Albert AP and Large WA (2002) Activation of store-operated channels by noradrenaline via protein kinase C in rabbit portal vein myocytes. J Physiol 544:113–125.

    PubMed  CAS  Google Scholar 

  • Alessi D, MacDougall LK, Sola MM, Ikebe M, Cohen P (1992) The control of protein phosphatase-1 by targeting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem 210:1023–1035

    PubMed  CAS  Google Scholar 

  • Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249

    PubMed  CAS  Google Scholar 

  • Arnon A, Hamlyn JM, Blaustein MP (2000) Na+ entry via store-operates channels modulates Ca2+ signalling in arterial myocytes. Am J Physiol 278:C163–C173

    CAS  Google Scholar 

  • Aromolaran AS, Albert AP and Large WA (2000) Evidence for myosin light chain kinase mediating noradrenaline-evoked cation current in rabbit portal vein myocytes. J Physiol 524:853–863

    PubMed  CAS  Google Scholar 

  • Asada Y, Yamazawa T, Hirose K, Takasaka T, Iino M (1999) Dynamic Ca2+ signalling rat arterial smooth muscle cells under the control of local renin-angiotensin system. J Physiol 521:497–505

    PubMed  CAS  Google Scholar 

  • Ashida T, Schaeffer J, Goldman WF, Wade JB, Blaustein MP (1988) Role of SR in arterial contraction: comparison of ryanodine’s effect in a conduit and a muscular artery. Circ Res 62:854–863

    PubMed  CAS  Google Scholar 

  • Bao JX, Stjarne L (1993) Dual contractile effects of ATP released by field stimulation revealed by effects of α,β-methylene ATP and suramin in rat tail artery. Br J Pharmacol 110:1421–1428

    PubMed  CAS  Google Scholar 

  • Baro I, Eisner DA (1995) Factors controlling changes in intracellular Ca2+ concentration produced by noradrenalinee in rat mesenteric artery smooth muscle cells. J Physiol 482:247–258

    PubMed  CAS  Google Scholar 

  • Baro I, Eisner D (1992) The effects of thapsigargin on [Ca2+]i in isolated rat mesteric artery vascular smooth muscle cells. Pflug Arch 420:115–117

    CAS  Google Scholar 

  • Baro L, O’Neill SC, Eisner DA (1993) Changes of intracellular [Ca2+] during refilling of SR in rat ventricular and vascular smooth muscle. J Physiol 465:21–41

    PubMed  CAS  Google Scholar 

  • Batchelor TJ, Sadaba JR, Ishola A, Pacaud P, Munsch CM, Beech DJ (2001) Rho-kinase inhibitors prevent agonist-induced vasospasm in human internal mammary artery. Br J Pharmacol 132:302–308

    PubMed  CAS  Google Scholar 

  • Bayley PM, Findlay WA, Martin SR (1996) Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci 5:1215–1228

    PubMed  CAS  Google Scholar 

  • Beech DJ (2002) SOCs—store-operated channels in vascular smooth muscle? J Physiol 544:1

    PubMed  CAS  Google Scholar 

  • Benham CD, Bolton TB (1986) Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol 499:291–306

    Google Scholar 

  • Blatter LA, Wier WG (1992) Agonist-induced [Ca2+]i waves and Ca2+-induced Ca2+ release in mammalian vascular smooth muscle cells. Am J Physiol 263:H576–H586

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: Its physiological implications. Physiol Revs 79:763–854

    CAS  Google Scholar 

  • Blaustein MP, Golovina VA, Song H, Choate J, Lencesova L, Robinson SW, Wier WG (2002) Organization of Ca2+ stores in vascular smooth muscle: functional implications. Novartis Found Symp 246:125–137; discussion 137–141, 221–227

    PubMed  CAS  Google Scholar 

  • Bogatcheva NV, Gusev NB (1995) Interaction of smooth muscle calponin with phospholipids. FEBS Lett 371:123–126

    PubMed  CAS  Google Scholar 

  • Boittin F-X, Macrez N, Halet G, Mironneau J (1999) Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes. Am J Physiol Cell Physiol 277:C139–C151

    CAS  Google Scholar 

  • Bolz SS, Galle J, Derwand R, de Wit C, Pohl U (2000) Oxidized LDL increases the sensitivity of the contractile apparatus in isolated resistance arteries for Ca2+ via a rho-and rho kinase-dependent mechanism. Circulation 102:2402–2410

    PubMed  CAS  Google Scholar 

  • Bonev A, Jaggar JH, Rubart M, Nelson MT (1997) Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol 273:C2090–C2095

    PubMed  CAS  Google Scholar 

  • Bradley AB, Morgan KG (1987) Alteration in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol 385:437–448

    PubMed  CAS  Google Scholar 

  • Braun AP, Schulman H (1995) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57:417–445

    PubMed  CAS  Google Scholar 

  • Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW (2000) Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407:870–876

    PubMed  CAS  Google Scholar 

  • Brocke L, Srinivasan M, Schulman H (1995) Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J Neurosci 15:6797–6808

    PubMed  CAS  Google Scholar 

  • Brocke L, Chiang LW, Wagner PD, Schulman H (1999) Functional implications of the subunit composition of neuronal CaM kinase II. J Biol Chem 274:22713–22722

    PubMed  CAS  Google Scholar 

  • Brozovich FV (1995) PKC regulates agonist-induced force enhancement in single α-toxin-permeabilized vascular smooth muscle cells. Am J Physiol 268(5 Pt 1):C1202–1206

    PubMed  CAS  Google Scholar 

  • Buus CL, Aalkjaer C, Nilsson H, Juul B, Moller JV, Mulvany MJ (1998) Mechanisms of Ca2+ sensitization of force production by noradrenaline in rat mesenteric small arteries. J Physiol 510:590

    Google Scholar 

  • Cauvin C, Tejerina M, Hwang O, Kai-Yamamoto M, Van Breemen C (1988) The effects of Ca2+ antagonists on isolated rat and rabbit mesenteric resistance vessels. What determines the sensitivity of agonist-activated vessels to Ca2+ antagonists? Ann N Y Acad Sci 522:338–350

    PubMed  CAS  Google Scholar 

  • Chalovich JM (1988) Caldesmon and thin-filament regulation of muscle contraction. Cell Biophys 12:73–85

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Tejada M (1986) Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol 251:C356–C61

    PubMed  CAS  Google Scholar 

  • Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328

    PubMed  CAS  Google Scholar 

  • Colbran RJ, Soderling TR (1990) Calcium/calmodulin-dependent protein kinase II. Curr Top Cell Regul 31:181–221

    PubMed  CAS  Google Scholar 

  • Cook AK, Carty M, Singer CA, Yamboliev IA, Gerthoffer WT (2000) Coupling of M2 muscarinic receptors to ERK MAP kinases and caldesmon phosphorylation in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 278:G429–G437

    PubMed  CAS  Google Scholar 

  • Coussin F, Macrez N, Morel JL, Mironneau J (2000) Requirement of ryanodine receptor subtypes 1 and 2 for Ca2+-induced Ca2+ release in vascular myocytes. J Biol Chem 275:9596–9603

    PubMed  CAS  Google Scholar 

  • Crowley CM, Lee CH, Gin SA, Keep AM, Cook RC, Van Breemen C (2002) The mechanism of excitation-contraction coupling in PE-stimulated human saphenous vein. Am J Physiol Heart Circ Physiol 283:H1271–H1281

    PubMed  CAS  Google Scholar 

  • Curtis TM and Scholfield CN (2001) Nifedipine blocks Ca2+ store refilling through a pathway not involving L-type Ca2+ channels in rabbit arteriolar smooth muscle. J Physiol 532:609–623

    PubMed  CAS  Google Scholar 

  • D’Angelo G, Adam LP (2002) Inhibition of ERK attenuates force development by lowering myosin light chain phosphorylation. Am J Physiol Heart Circ Physiol 282:H602–H610

    PubMed  CAS  Google Scholar 

  • Danthuluri NR, Deth RC (1984) Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response. Biochem Biophys Res Commun 125:1103–1109

    PubMed  CAS  Google Scholar 

  • Deisseroth K, Heist EK, Tsien RW (1998) Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature 392:198–202

    PubMed  CAS  Google Scholar 

  • De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279:227–230

    PubMed  Google Scholar 

  • Deng JT, Van Lierop JE, Sutherland C, Walsh MP (2001) Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase. J Biol Chem 276:16365–16373

    PubMed  CAS  Google Scholar 

  • Dessy C, Kim I, Sougnez CL, Laporte R, Morgan KG (1998) A role for MAP kinase in differentiated smooth muscle contraction evoked by α-adrenoceptor stimulation. Am J Physiol Cell 275:C1081–C1086

    CAS  Google Scholar 

  • Dillon PF, Aksoy MO, Driska SP, Murphy RA (1981) Myosin phosphorylation and the crossbridge cycle in arterial smooth muscle. Science 211:495–497

    PubMed  CAS  Google Scholar 

  • Diver JM, Sage SO, Rosado JA (2001) The inositol trisphosphate receptor antagonist 2-aminoethoxy-diphenylborate (2-APB) blocks Ca2+ entry channels in human platelets: cautions for its use in studying Ca2+ influx. Cell Calcium 30:323–329

    PubMed  CAS  Google Scholar 

  • Dreja K, Nordstrom I, Hellstrand P (2001) Rat arterial smooth muscle devoid of ryanodine receptor function: effects on cellular Ca2+ handling. Br J Pharmacol 132:1957–1966

    PubMed  CAS  Google Scholar 

  • Dunn AR, Mann GB, Fowler KJ, Grail D, Hibbs ML, Alexander WS, Walker F, Burgess AW (1994) Insights into the physiology of TGFα and signaling through the EGF receptor revealed by gene targeting and acts of nature. Princess Takamatsu Symp 24:276–289

    PubMed  CAS  Google Scholar 

  • Earley JJ, Su X, Moreland RS (1998) Caldesmon inhibits active crossbridges in unstimulated vascular smooth muscle: an antisense oligodeoxynucleotide approach. Circ Res 83:661–667

    PubMed  CAS  Google Scholar 

  • Eto M, Ohmori T, Suzuki M, Furuya K, Morita F (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem (Tokyo) 118:1104–1107

    CAS  Google Scholar 

  • Eto M, Senba S, Morita F, Yazawa M (1997) Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: its specific localization in smooth muscle. FEBS Lett 410:356–360

    PubMed  CAS  Google Scholar 

  • Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, Nakano T (1999) Inhibitory phosphorylation site for rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem 274:37385–37389

    PubMed  CAS  Google Scholar 

  • Fleckenstein-Grun G (1996) Calcium antagonism in vascular smooth muscle cells. Pflugers Arch 432:R53–R60

    PubMed  CAS  Google Scholar 

  • Flemming R, Cheong A, Dedman AM and Beech DJ (2002) Discrete store-operated calcium influx into an intracellular compartment in rabbit arteriolar smooth muscle. J Physiol 543:455–464

    PubMed  CAS  Google Scholar 

  • Flynn ER, Bradley KN, Muir TC, McCarron JG (2001) Functionally separate intracellular Ca2+ stores in smooth muscle. J Biol Chem 276:36411–36418

    PubMed  CAS  Google Scholar 

  • Garcha RS, Hughes AD (1995) Inhibition of norepinephrine and caffeine-induced activation by ryanodine and thapsigargin in rat mesenteric arteries. J Cardiovasc Pharmacol 25:840–846

    PubMed  CAS  Google Scholar 

  • Gerthoffer WT, Murphy KA, Gunst SJ (1989) Aequorin luminescence, myosin phosphorylation, and active stress tracheal smooth muscle. Am J Physiol 257:C1062–C1068

    PubMed  CAS  Google Scholar 

  • Gerthoffer WT, Yamboliev IA, Shearer M, Pohl J, Haynes R, Dang S, Sato K, Sellers JR (1996) Activation of MAP kinases and phosphorylation of caldesmon in canine colonic smooth muscle. J Physiol 495.3:597–609

    Google Scholar 

  • Gimona M, Mital R (1998) The single CH domain of calponin is neither sufficient nor necessary for F-actin binding. J Cell Sci 111:1813–1821

    PubMed  CAS  Google Scholar 

  • Gimona M, Winder SJ (1998) Single calponin homology domains are not actin binding domains. Curr Biol 8:R674–R675

    PubMed  CAS  Google Scholar 

  • Gimona M, Small JV (1996) Calponin. In Bárány M (ed) Biochemistry of smooth muscle. Academic Press, San Diego, pp 91–104

    Google Scholar 

  • Gimona M, Herzog M, Vandekerckhove J, Small JV (1990) Smooth muscle specific expression of calponin. FEBS Lett 274:159–162

    PubMed  CAS  Google Scholar 

  • Gitterman DP, Evans RJ (2001) Nerve-evoked P2X receptor contractions of rat mesenteric arteries; dependence on vessel size and lack of role of L-type calcium channels and calcium-induced calcium release. Br J Pharmacol 132:1201–1208

    PubMed  CAS  Google Scholar 

  • Goeckeler ZM, Masaracchia RA, Zeng Q, Chew T-L, Gallagher P, Wysolmerski RB (2000) Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 275:18366–18374

    PubMed  CAS  Google Scholar 

  • Gokina NI, Osol G (1998) Temperature and protein kinase C modulate myofilament Ca2+ sensitivity in pressurized rat cerebral arteries. Am J Physiol 274:H1920–H1927

    PubMed  CAS  Google Scholar 

  • Gokina NI, Knot HJ, Nelson MT (1999) Increased Ca2+ sensitivity as a key mechanism of PKC-induced constriction in pressurized cerebral arteries. Am J Physiol 46:H1178–H1188

    Google Scholar 

  • Golovina VA, Blaustein MP (1997) Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 275:1643–1648

    PubMed  CAS  Google Scholar 

  • Gong MC, Fujihara H, Somlyo AV, Somlyo AP (1997) Translocation of rhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 272:10704–10709

    PubMed  CAS  Google Scholar 

  • Gordienko DV, Bolton TB (2002) Crosstalk between ryanodine receptors and IP(3) receptors as a factor shaping spontaneous Ca(2+)-release events in rabbit portal vein myocytes. J Physiol 542:743–762

    PubMed  CAS  Google Scholar 

  • Gordienko DV, Bolton, TB, Cannell, MB (1998) Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells. J Physiol 507:707–720

    PubMed  CAS  Google Scholar 

  • Gordienko DV, Greenwood IA, Bolton TB (2001) Direct visualization of sarcoplasmic reticulum regions discharging Ca2+ sparks in vascular myocytes. Cell Calcium 29:13–28

    PubMed  CAS  Google Scholar 

  • Gorenne I, Su X, Moreland RS (1998) Inhibition of p42 and p44 MAP kinase does not alter smooth muscle contraction in swine carotid artery. Am J Physiol 44:H131–H138

    Google Scholar 

  • Greenwood IA, Ledoux J, Leblanc N (2001) Differential regulation of Ca2+-activated Cl currents in rabbit arterial and portal vein smooth muscle cells by Ca2+-calmodulin-dependent kinase. J Physiol 534(Pt. 2): 395–408

    PubMed  CAS  Google Scholar 

  • Grover AK, Xu A, Samson SE, Narayanan N (1996) SR Ca2+ pump in pig coronary artery smooth muscle is regulated by a novel pathway. Am J Physiol 271:C181–C7

    PubMed  CAS  Google Scholar 

  • Gunst SJ, Tang DD (2000) The contractile apparatus and mechanical properties of airway smooth muscle. Eur Respir J 15:600–616

    PubMed  CAS  Google Scholar 

  • Gunst SJ, Gerthoffer WT, al-Hassani MH (1992) Ca2+ sensitivity of contractile activation during muscarinic stimulation of tracheal muscle. Am J Physiol Cell Physiol 263:C1258–C1265

    CAS  Google Scholar 

  • Gunst SJ, al-Hassani MH, Adam LP (1994) Regulation of isotonic shortening velocity by second messengers in tracheal smooth muscle. Am J Physiol Cell 266:C684–C691

    CAS  Google Scholar 

  • Gustafsson H, Bulow A, Nilsson H (1994) Rhythmic contractions of isolated pressurized small arteries from rat. Acta Physiol Scand 152:145–152

    PubMed  CAS  Google Scholar 

  • Haeberle JR (1999) Thin-filament linked regulation of smooth muscle myosin. J Muscle Res Cell Motil 20:363–370

    PubMed  CAS  Google Scholar 

  • Hai C-M, Murphy RA (1988) Crossbridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol 254:C99–C106

    PubMed  CAS  Google Scholar 

  • Hai C-M, Murphy RA (1989) Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol 51:285–298

    PubMed  CAS  Google Scholar 

  • Halayko AJ, Solway J (2001) Molecular mechanisms of phenotypic plasticity in smooth muscle cells. J Appl Physiol 90:358–368

    PubMed  CAS  Google Scholar 

  • Hamaguchi T, Ito M, Feng J, Seko T, Koyama M, Machida H, Takase K, Amano M, Kaibuchi K, Hartshorne DJ, Nakano T (2000) Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun 274:825–830

    PubMed  CAS  Google Scholar 

  • Hartshorne DJ, Ito M, Erdodi F (1998) Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil 19:325–341

    PubMed  CAS  Google Scholar 

  • Hedges JC, Oxhorn BC, Carty M, Adam LP, Yamboliev IA, Gerthoffer WT (2000) Phosphorylation of caldesmon by ERK MAP kinases in smooth muscle. Am J Physiol Cell 278:C718–C726

    CAS  Google Scholar 

  • Hemric ME, Tracy PB, Haeberle JR (1994) Caldesmon enhances the binding of myosin to the cytoskeleton during platelet activation. J Biol Chem 269:4125–4128

    PubMed  CAS  Google Scholar 

  • Himpens B, Matthijs G, Somlyo AV, Butler TM, Somlyo AP (1988) Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol 92:713–729

    PubMed  CAS  Google Scholar 

  • Hirst GD, Edwards FR (1989) Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69:546–604

    PubMed  CAS  Google Scholar 

  • Horowitz A, Clement-Chomienne O, Walsh MP, Morgan KG (1996a) ε-Isoenzyme of protein kinase C induces a Ca2+-independent contraction in vascular smooth muscle. Am J Physiol 271:C589–C594

    PubMed  CAS  Google Scholar 

  • Horowitz A, Menice CB, Laporte R, Morgan KG (1996b) Mechanisms of smooth muscle contraction. Physiol Rev 76:967–1003

    PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J Physiol 465:359–386

    PubMed  CAS  Google Scholar 

  • Hulvershorn J, Gallant C, Wang C-LW, Dessy C, Morgan KG (2001) Calmodulin levels are dynamically regulated in living vascular smooth muscle cells. Am J Physiol Heart Physiol 280:H1422–H1426

    CAS  Google Scholar 

  • Hwang KS, Van Breemen C (1987) Ryanodine modulation of 45Ca efflux and tension in rabbit aortic smooth muscle. Pflug Arch 408:343–350

    CAS  Google Scholar 

  • Ichikawa K, Ito M, Hartshorne DJ (1996a) Phosphorylation of the large subunit of myosin phosphatase and inhibition of phosphatase activity. J Biol Chem 271:4733–4740

    PubMed  CAS  Google Scholar 

  • Ichikawa K, Hirano K, Ito M, Tanaka J, Nakano T, Hartshorne DJ (1996b) Interactions and properties of smooth muscle myosin phosphatase. Biochemistry 35:6313–6320

    PubMed  CAS  Google Scholar 

  • Iino M (2002) Family affairs of intracellular Ca2+-release channels. J Physiol 542:667

    PubMed  CAS  Google Scholar 

  • Iino M, Kasai H, Yamazawa T (1994) Visualization of neural control on intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. EMBO J 13:5026–5031

    PubMed  CAS  Google Scholar 

  • Ikebe M, Reardon S (1988) Binding of caldesmon to smooth muscle myosin. J Biol Chem 263:3055–3058

    PubMed  CAS  Google Scholar 

  • Jaggar JH (2001) Intravascular pressure regulates local and global Ca2+ signaling in cerebral artery smooth muscle cells. Am J Physiol 281:C439–C448

    CAS  Google Scholar 

  • Jaggar JH, Nelson MT (2000) Differential regulation of Ca2+ sparks and Ca2+ waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279:C1528–C1539

    PubMed  CAS  Google Scholar 

  • Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol 278:C235–C256

    CAS  Google Scholar 

  • Jaggar JH, Stevenson AS, Nelson MT (1998a) Voltage dependence of Ca2+ sparks in intact cerebral arteries. Am J Physiol 274:C1755–1761

    PubMed  CAS  Google Scholar 

  • Jaggar JH, Wellman GC, Heppner TJ, Porter VA, Perez GJ, Gollasch M, Kleppisch T, Stevenson AS, Lederer WJ, Knot HJ, Bonev AD, Nelson MT (1998b) Ca2+ channels, ryanodine receptors and Ca2+-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand 164:577–587

    PubMed  CAS  Google Scholar 

  • Janiak R, Wilson SM, Montague S, Hume JR (2001) Heterogeneity of calcium stores and elementary release events in canine pulmonary arterial smooth muscle cells. Am J Physiol 280:C22–C33

    CAS  Google Scholar 

  • Je HD, Gangopadhyay SS, Ashworth TD, Morgan KG (2001) Calponin is required for agonist-induced signal transduction—evidence from an antisense approach in ferret smooth muscle. J Physiol 537(Pt 2):567–577

    PubMed  CAS  Google Scholar 

  • Jiang MJ, Morgan KG (1987) Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Am J Physiol 253:H1365–H1371

    PubMed  CAS  Google Scholar 

  • Jiang MJ, Morgan KG (1989) Agonist-specific myosin phosphorylation and intracellular calcium during isometric contractions of arterial smooth muscle. Pflug Archiv 413:637–643

    CAS  Google Scholar 

  • Johnson D, Cohen P, Chen MX, Chen YH, Cohen PT (1997) Identification of the regions on the M110 subunit of protein phosphatase 1 M that interact with the M21 subunit and with myosin. Eur J Biochem 244:931–939

    PubMed  CAS  Google Scholar 

  • Johnson JD, Snyder C, Walsh M, Flynn M (1996) Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N-and C-terminal Ca2+ binding sites of calmodulin. J Biol Chem 271:761–767

    PubMed  CAS  Google Scholar 

  • Julou-Schaeffer G, Freslon JL (1988) Effect of ryanodine on tension development in rat aorta and mesenteric resistance arteries. Br J Pharmacol 95:605–613

    PubMed  CAS  Google Scholar 

  • Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25:593–620

    CAS  Google Scholar 

  • Kamm KE, Stull JT (1989) Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol 51:299–313

    PubMed  CAS  Google Scholar 

  • Kaneko T, Amano M, Maeda A, Goto H, Takahashi K, Ito M, Kaibuchi K (2000) Identification of calponin as a novel substrate of Rho-kinase. Biochem Biophys Res Commun 273:110–116

    PubMed  CAS  Google Scholar 

  • Kanmura Y, Missiaen L, Raeymaekers L, Casteels R (1988) Ryanodine reduces the amount of calcium in intracellular stores of smooth-muscle cells of the rabbit ear artery. Pflugers Arch 413:153–159

    PubMed  CAS  Google Scholar 

  • Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49:157–230

    PubMed  CAS  Google Scholar 

  • Kasai Y, Yamazawa T, Sakurai T, Taketani Y, Iino M (1997) Endothelium-dependent frequency modulation of Ca2+ signalling in individual vascular smooth muscle cells of the rat. J Physiol 504:349–357

    PubMed  CAS  Google Scholar 

  • Katsuyama H, Wang C-LA, Morgan KG (1992) Regulation of vascular smooth muscle tone by caldesmon. J Biol Chem 267:14555–14558

    PubMed  CAS  Google Scholar 

  • Khalil RA, Morgan KG (1993) PKC-mediated redistribution of mitogen-activated protein kinase during smooth muscle activation. Am J Physiol 265:C406–C411

    PubMed  CAS  Google Scholar 

  • Khalil RA, Lajoie C, Morgan KG (1994) In situ determination of the [Ca2+]i threshold for translocation of the α protein kinase C isoform. Am J Physiol: Cell 266:C1544–C1551

    CAS  Google Scholar 

  • Khalil RA, Menice CB, Wang C-LA, Morgan KG (1995) Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells. Circ Res 76:1101–1108

    PubMed  CAS  Google Scholar 

  • Kim I, Je H-D, Gallant C, Zhan Q, Van Riper D, Badwey JA, Singer HA, Morgan KG (2000) Ca2+-calmodulin-dependent protein kinase II-dependent activation of contractility in ferret aorta. J Physiol 526:367–374

    PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245–248

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Takizawa N, Ikebe M, Eto M (1999) Reconstitution of protein kinase C-induced contractile Ca2+ sensitization in triton X-100-demembranated rabbit arterial smooth muscle. J Physiol 520(Pt 1):139–152

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Eto M, Woodsome TP, Brautigan DL (2000) Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem 275:9897–9900

    PubMed  CAS  Google Scholar 

  • Knot HJ (2001) Calcium sparks unleashed in vascular smooth muscle: lessons from the RyR3 knockout mouse. Circ Res 89:941–943

    PubMed  CAS  Google Scholar 

  • Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260

    PubMed  CAS  Google Scholar 

  • Lagaud GJ, Skarsgard PL, Laher I, Van Breemen C (1999) Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. J Pharmacol Exp Ther 290:832–839

    PubMed  CAS  Google Scholar 

  • Lamont C, Wier WG (2002) Evoked and spontaneous purinergic junctional Ca2+ transients in rat small arteries. Circ Res 91:4454–4456

    Google Scholar 

  • Lee C-H, Poburko D, Sahota P, Sandhu J, Ruehlmann DO, Van Breeman C (2001) The mechanism of phenylephrine-mediated [Ca2+]i oscillations underlying tonic contraction in the rabbit IVC. J Physiol 534.3:641–650

    Google Scholar 

  • Lee C-H, Poburko D, Kuo K-H, Seow CY, Van Breeman C (2002a) Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. Am J Physiol Heart Circ Physiol 282:H1571–H1583

    PubMed  CAS  Google Scholar 

  • Lee C-H, Rahimian R, Szado T, Sandhu J, Poburko D, Behra T, Chan L, Van Breeman C (2002b) Requirement for the opening of IP3-sensitive Ca2+ channels and SOC in α1-adrenergic receptor-mediated constriction of the rabbit IVC. Am J Physiol Heart Circ Physiol (in press)

    Google Scholar 

  • Lee Y-H, Kim I, Laporte R, Walsh MP, Morgan KG (1999) Isozyme-specific inhibitors of PKC translocation: effects on contractility of single permeabilized vascular muscle cells of the ferret. J Physiol (Lond) 517:709–720

    CAS  Google Scholar 

  • Lee Y-H, Gallant C, Guo H, Li Y, Wang C-LA, Morgan KG (2000) Regulation of vascular smooth muscle tone by N-terminal region of caldesmon: possible role of tethering actin to myosin. J Biol Chem 275:3213–3220

    PubMed  CAS  Google Scholar 

  • Leinweber B, Parissenti AM, Gallant C, Gangopadhyay SS, Kirwan-Rhude A, L eavis PC, Morgan KG (2000) Regulation of protein kinase C by the cytoskeletal protein calponin. J Biol Chem 275:40329–40336

    PubMed  CAS  Google Scholar 

  • Leinweber BD, Leavis PC, Grabarek Z, Wang C-LA, Morgan KG (1999) Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin binding proteins. Biochem J 344:117–123

    PubMed  CAS  Google Scholar 

  • Lesh RE, Nixon GR, Fleischer S, Airey JA, Somlyo AP, Somlyo AV (1998) Localization of ryanodine receptors in smooth muscle. Circ Res 82:175–185

    PubMed  CAS  Google Scholar 

  • Li L, Guo H, Wang C-LA (2001) Effect of ERK-phosphorylation on actin binding of caldesmon (abstract). Biophys J 80:359a

    Google Scholar 

  • Li Y, Zhuang S, Guo H, Mabuchi K, Lu RC, Wang CA (2000) The major myosin-binding site of caldesmon resides near its N-terminal extreme. J Biol Chem 275:10989–10994

    PubMed  CAS  Google Scholar 

  • Lin P, Luby-Phelps K, Stull JT (1999) Properties of filament-bound myosin light chain kinase. J Biol Chem 274:5987–5994

    PubMed  CAS  Google Scholar 

  • Lohn M, Furstenau M, Sagach V, Elger M, Schulze W, Luft FC, Haller H, Gollasch M (2000) Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res 87:1034–1039

    PubMed  CAS  Google Scholar 

  • Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M (2001) Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 89:1051–1057

    PubMed  CAS  Google Scholar 

  • Lopez-Lopez JR, Shacklock PS, Balke CW, Wier WG (1995) Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268:1042–1045

    PubMed  CAS  Google Scholar 

  • Luby-Phelps K, Hori M, Phelps JM, Won D (1995) Ca2+-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem 270:21532–21538

    PubMed  CAS  Google Scholar 

  • Mabuchi K, Li B, Ip W, Tao T (1997) Association of calponin with desmin intermediate filaments. J Biol Chem 272:22662–22666

    PubMed  CAS  Google Scholar 

  • MacDonald JA, Borman MA, Muranyi A, Somlyo AV, Hartshorne DJ, Haystead TA (2001) Identification of the endogenous smooth muscle myosin phosphatase-associated kinase. Proc Natl Acad Sci USA 98:2419–2424

    PubMed  CAS  Google Scholar 

  • Marston S, Levine BA, Gao Y, Evans J, Patchell VB, El-Mezgueldi M, Fattoum A, Vorotnikov AV (2001) MAP kinase phosphorylation at serine 702 alters structural and actin binding properties of caldesmon (abstract). Biophys J 80:69a

    Google Scholar 

  • Marston SB, Smith CWJ (1984) Purification and properties of Ca2+-regulated thin filaments and F-actin from sheep aorta smooth muscle J Muscle Res Cell Motility 5:559–575

    CAS  Google Scholar 

  • Marston SB, Trevett RM, Walters M (1980) Calcium ion-regulated thin filaments from vascular smooth muscle. Biochem J 185:355–365

    PubMed  CAS  Google Scholar 

  • Matrougui K, Tanko LB, Loufrani L, Gorny D, Levy BI, Tedgui A, Henrion D (2001) Involvement of Rho-kinase and the actin filament network in angiotensin II-induced contraction and extracellular signal-regulated kinase activity in intact rat mesenteric resistance arteries. Arterioscler Thromb Vasc Biol 21:1288–1293

    PubMed  CAS  Google Scholar 

  • Matthew JD, Khromov AS, Somlyo AV, Somlyo AP, Karaki H, Tsuchiya T, Takahashi K (2000) Ca2+-sensitization of smooth muscle in calponin knockout mouse (abstract). Biophys J 78:647

    Google Scholar 

  • Mauban J, Lamont C, Balke CW, Wier WG (2001) Adrenergic stimulation of rat resistance arteries affects Ca2+ sparks, Ca2+ waves, and Ca2+ oscillations. Am J Physiol 280:H2399–H2405

    CAS  Google Scholar 

  • McCaron JG, McGeown JG, Reardon S, Ikebe M, S FF, Walsh JV (1992) Calcium-dependent enhancement of calcium current in smooth muscle by calmodulin-dependent protein kinase II. Nature 357:74–77

    Google Scholar 

  • McGeown JG, McCarron JG, Drummond RM, Fay FS (1998) Calcium-calmodulin-dependent mechanisms accelerate calcium decay in gastric myocytes from Bufo marinus. J Physiol 506(Pt 1):95–107

    PubMed  CAS  Google Scholar 

  • Meisheri KD, Ruegg JC, Paul RJ (1985) Studies on skinned fiber preparations. In: Grover AK, Daniel EE (eds) Calcium and contractility. Humana Press, Clifton, NJ, pp 191–224

    Google Scholar 

  • Menice CB, Hulvershorn J, Adam LP, Wang C-LA, Morgan KG (1997) Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J Biol Chem 272:25157–25161

    PubMed  CAS  Google Scholar 

  • Merkel LA, Rivera LM, Colussi DJ, Perrone MH (1991) Protein kinase C and vascular smooth muscle contractility: effects of inhibitors and downregulation. J Pharmacol Exp Ther 257:134–140

    PubMed  CAS  Google Scholar 

  • Mezgueldi M, Mendre C, Calas B, Kassab R, Fattoum A (1995) Characterization of the regulatory domain of gizzard calponin-interactions of the 145–163 region with F-actin, calcium-binding proteins, and tropomyosin. J Biol Chem 270:8867–8876

    PubMed  CAS  Google Scholar 

  • Mii S, Khalil RA, Morgan KG, Ware JA, Kent KC (1996) Mitogen-activated protein kinase and proliferation of human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 270:H142–H50

    CAS  Google Scholar 

  • Mino T, Yuasa U, Nakamura F, Naka M, Tanaka T (1998) Two distinct actin binding sites of smooth muscle calponin. Eur J Biochem 251:262–268

    PubMed  CAS  Google Scholar 

  • Miriel V, Mauban J, Blaustein MP, Wier WG (1999) Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol 518.3:815–824

    Google Scholar 

  • Missiaen L, Callewaert G, De Smedt H, Parys JB (2001) 2-Aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the nonspecific Ca2+ leak from the nonmitochondrial Ca2+ stores in permeabilized A7r5 cells. Cell Calcium 29:111–116

    PubMed  CAS  Google Scholar 

  • Mita M, Walsh MP (1997) Alpha1-adrenoceptor-mediated phosphorylation of myosin in rat-tail arterial smooth muscle. Biochem J 327(Pt 3):669–674

    PubMed  CAS  Google Scholar 

  • Miyazaki K, Yano T, Schmidt DJ, Tokui T, Shibata M, Lifshitz LM, Kimura S, Tuft RA, Ikebe M (2002) Rho-dependent agonist-induced spatio-temporal change in myosin phosphorylation in smooth muscle cells. J Biol Chem 277:725–734

    PubMed  CAS  Google Scholar 

  • Moreland S, Moreland RS, Singer HA (1987) Apparent dissociation between myosin light chain phosphorylation and maximal velocity of shortening in KCl depolarized swine carotid artery; effect of temperature and KCl concentration. Pflug Archiv 408:139–145

    CAS  Google Scholar 

  • Moreland S, Antes LM, McMullen DM, Sleph PG, Grover GJ (1990) Myosin light-chain phosphorylation and vascular resistance in canine anterior tibial arteries in situ. Pflug Arch 417:180–184

    CAS  Google Scholar 

  • Moreland SJ, Nishimura J, Van Breemen C, Ahn HY, Moreland RS (1992) Transient myosin phosphorylation at constant Ca2+ during agonist activation of permeabilized arteries. Am J Physiol 263:C540–C544

    PubMed  CAS  Google Scholar 

  • Morgan KG, Gangopadhyay SS (2001) Invited review: crossbridge regulation by thin filament-associated proteins. J Appl Physiol 91:953–962

    PubMed  CAS  Google Scholar 

  • Morgan JP, Morgan KG (1982) Vascular smooth muscle: the first recorded Ca2+ transients. Pflug Arch 395:75–77

    CAS  Google Scholar 

  • Morgan JP, Morgan KG (1984) Stimulus-specific patterns of intracellular calcium levels in ferret portal vein smooth muscle. J Physiol 351:155–167

    PubMed  CAS  Google Scholar 

  • Morishige K, Shimokawa H, Eto Y, Hoshijima M, Kaibuchi K, Takeshita A (2001) In vivo gene transfer of dominant-negative rho-kinase induces regression of coronary arteriosclerosis in pigs. Ann N Y Acad Sci 947:407–411

    PubMed  CAS  Google Scholar 

  • Morrison DL, Sanghera JS, Stewart J, Sutherland C, Walsh MP, Pelech SL (1996) Phosphorylation and activation of smooth muscle myosin light chain kinase by MAP kinase and cyclin-dependent kinase-1. Biochem Cell Biol 74:549–557

    PubMed  CAS  Google Scholar 

  • Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, Kaibuchi K, Takeshita A (2001) Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J 15:1062–1064

    PubMed  CAS  Google Scholar 

  • Mulvany MJ, Aalkjaer C (1990) Structure and function of small arteries. Physiol Rev 70:921–961

    PubMed  CAS  Google Scholar 

  • Murphy RA (1994) What is special about smooth muscle? The significance of covalent crossbridge regulation. FASEB J 8:311–318

    PubMed  CAS  Google Scholar 

  • Nagumo H, Sasaki Y, Ono Y, Okamoto H, Seto M, Takuwa Y (2000) Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol 278:C57–C65

    PubMed  CAS  Google Scholar 

  • Naito Y, Watanabe Y, Yokokura H, Sugita R, Nishio M, Hidaka H (1997) Isoform-specific activation and structural diversity of calmodulin kinase I. J Biol Chem 272:32704–32708

    PubMed  CAS  Google Scholar 

  • Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637

    PubMed  CAS  Google Scholar 

  • Nelson MT, Conway MA, Knot HJ, Brayden JE (1997) Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol 502:259–264

    PubMed  CAS  Google Scholar 

  • Ngai PK, Walsh MP (1984) Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem 259:13656–13659

    PubMed  CAS  Google Scholar 

  • Nguyen DHD, Catling AD, Webb DJ, Sankovic M, Walker LA, Somlyo AV, Weber MJ, Gonias SL (1999) Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen-activator cells in an integrin-selective manner. J Cell Biol 146:149–164

    PubMed  CAS  Google Scholar 

  • Nilsson H, Goldstein M, Nilsson O (1986) Adrenergic innervation and neurogenic response in large and small arteries and veins from the rat. Acta Physiol Scand 126:121–133

    PubMed  CAS  Google Scholar 

  • Nishimura J, Kolber M, Van Breemen C (1988) Norepinephrine and GTP-γ-S increase myofilament Ca2+ sensitivity in α-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun 157:677–683

    PubMed  CAS  Google Scholar 

  • Nobe K, Paul RJ (2001) Distinct pathways of Ca2+ sensitization in porcine coronary artery: effects of rhorelated kinase and protein kinase c inhibition on force and intracellular Ca2+. Circ Res 88:1283–1290

    PubMed  CAS  Google Scholar 

  • Notarianni G, Gusev N, Lafitte D, Hill TJ, Cooper HS, Derrick PJ, Marston SB (2000) A novel Ca2+ binding protein associated with caldesmon in Ca2+-regulated smooth muscle thin filaments: evidence for a structurally altered form of calmodulin. J Muscle Res Cell Motil 21:537–549

    PubMed  CAS  Google Scholar 

  • Ohanian V, Ohanian J, Shaw L, Scarth S, Parker PJ, Heagerty AM (1996) Identification of protein kinase C isoforms in rat mesenteric small arteries and their possible role in agonist-induced contraction. Circ Res 78:806–812

    PubMed  CAS  Google Scholar 

  • Omote M, Kajimoto N, Mizusawa H (1993) The ionic mechanism of phenylephrine-induced rhythmic contractions in rabbit mesenteric arteries treated with ryanodine. Acta Physiol Scand 147:9–13

    PubMed  CAS  Google Scholar 

  • Papageorgiou P, Morgan KG (1991) Intracellular free Ca2+ is elevated in hypertrophic aortic muscle from hypertensive rats. Am J Physiol 260:H507–H515

    PubMed  CAS  Google Scholar 

  • Parthimos D, Edwards DH, Griffith TM (1999) Minimal model of arterial chaos generated by coupled intracellular and membrane Ca2+ oscillations. Am J Physiol 277:H1119–H1144

    PubMed  CAS  Google Scholar 

  • Pearson RB, Wettenhall REH, Means AR, Hartshorne DJ, Kemp BE (1988) Autoregulation of enzymes by pseudosubstrate prototopes: myosin light chain kinase. Science 241:970–973

    PubMed  CAS  Google Scholar 

  • Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88:810–815

    PubMed  CAS  Google Scholar 

  • Persechini A, Cronk B (1999) The relationship between the free concentrations of Ca2+ and Ca2+-calmodulin in intact cells. J Biol Chem 274:6827–6830

    PubMed  CAS  Google Scholar 

  • Pucovsky V, Gordienko DV, Bolton, TB (2002) Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea-pig small mesenteric arteries. J Physiol 539:25–39

    PubMed  CAS  Google Scholar 

  • Quadroni M, James P, Carafoli E (1994) Isolation of phosphorylated calmodulin from rat liver and identification of the in vitro phosphorylation sites. J Biol Chem 269:16116–16122

    PubMed  CAS  Google Scholar 

  • Rasmussen H, Takuwa Y, Park S (1987) Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1:177–185

    PubMed  CAS  Google Scholar 

  • Roberts RE (2001) Role of the extracellular signal-regulated kinase (ERK) signal transduction cascade in α2-adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein. Br J Pharmacol 133:859–866

    PubMed  CAS  Google Scholar 

  • Rokolya A, Singer HA (2000) Inhibition of CaM kinase II activation and force maintenance by KN-93 in arterial smooth muscle. Am J Physiol Cell Physiol 278:C537–C545

    PubMed  CAS  Google Scholar 

  • Ruegg JC, Meisheri K, Pfitzer G, Zeugner C (1983) Skinned coronary smooth muscle: calmodulin, calcium antagonists, and cAMP influence contractility. Basic Res Cardiol 78:462–471

    PubMed  CAS  Google Scholar 

  • Ruegg JC, Pfitzer G, Zimmer M, Hofmann F (1984) The calmodulin fraction responsible for contraction in an intestinal smooth muscle. FEBS Lett 170:383–386

    PubMed  CAS  Google Scholar 

  • Ruehlmann DO, Lee C-H, Poburko D, Van Breemen C (2000) Asynchronous Ca2+ waves in intact venous smooth muscle. Circ Res 86:e72–e79

    PubMed  CAS  Google Scholar 

  • Sacks DB, McDonald JM (1989) Calmodulin as substrate for insulin-receptor kinase. Phosphorylation by receptors from rat skeletal muscle. Diabetes 38:84–90

    PubMed  CAS  Google Scholar 

  • Sakurada S, Okamoto H, Takuwa N, Sugimoto N, Takuwa Y (2001) Rho activation in excitatory agonist-stimulated vascular smooth muscle. Am J Physiol Cell Physiol 281:C571–C578

    PubMed  CAS  Google Scholar 

  • Sanders KM (2001) Signal transduction in smooth muscle. Invited review: mechanisms of calcium handling in smooth muscles. J Appl Physiol 91:1438–1449

    PubMed  CAS  Google Scholar 

  • Sato K, Dohi Y, Suzuki S, Miyagawa K, Takase H, Kojima M, Van Breemen C (2001) Role of Ca2+-sensitive protein kinase C in PE enhancement of Ca2+ sensitivity in rat tail artery. J Cardiovasc Pharmacol 38:347–355

    PubMed  CAS  Google Scholar 

  • Schulman H, Hanson PI (1993) Multifunctional Ca2+/calmodulin-dependent protein kinase. Neurochem Res 18:65–77

    PubMed  CAS  Google Scholar 

  • Schwartz A (1994) Molecular studies of the calcium antagonist binding site on calcium channels. Am J Cardiol 73:12B–14B

    PubMed  CAS  Google Scholar 

  • Sell M, Boldt W, Markwardt F (2002) Desynchronizing effect of the endothelium on intracellular Ca2+ concentration dynamics in vascular smooth muscle cells of rat mesenteric arteries. Cell Calcium 32:105–120

    PubMed  CAS  Google Scholar 

  • Sellers JR (1999) Unphosphorylated crossbridges and latch: smooth muscle regulation revisited. J Muscle Res Cell Motil 20:347–349

    PubMed  CAS  Google Scholar 

  • Senba S, Eto M, Yazawa M (1999) Identification of trimeric myosin phosphatase (PP1 M) as a target for a novel PKC-potentiated protein phosphatase-1 inhibitory protein (CPI17) in porcine aorta smooth muscle. J Biochem 125:354–362

    PubMed  CAS  Google Scholar 

  • Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851

    PubMed  CAS  Google Scholar 

  • Shin HM, Hyun-Dong J, Gallant C, Tao TC, Hartshorne DJ, Ito M, Morgan KG (2002) Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle. Circ Res 90:546–553

    PubMed  CAS  Google Scholar 

  • Shirinsky VP, Biryukov KG, Hettasch JM, Sellers JR (1992) Inhibition of the relative movement of actin and myosin by caldesmon and calponin. J Biol Chem 267:15886–15892

    PubMed  CAS  Google Scholar 

  • Shmigol AV, Eisner D, Wray S (2001) Simultaneous measurements of changes in SR and cytosolic [Ca2+] in rat uterines smooth muscle cells. J Physiol 531:707–713

    PubMed  CAS  Google Scholar 

  • Siegman MJ, Butler TM, Mooers SU, Michalek A (1984) Ca2+ can affect Vmax without changes in myosin light chain phosphorylation in smooth muscle. Pflugers Arch 401:385–390

    PubMed  CAS  Google Scholar 

  • Singer HA (1990) Phorbol ester-induced stress and myosin light chain phosphorylation in swine carotid medial smooth muscle. J Pharmacol Exp Ther 252:1068–1074

    PubMed  CAS  Google Scholar 

  • Singer HA, Abraham ST, Schworer CM (1996) Calcium/calmodulin-dependent protein kinase II. In: Bárány M (ed) Biochemistry of smooth muscle contraction. Academic Press, San Diego, pp 143–153

    Google Scholar 

  • Singer HA, Benscoter HA, Schworer CM (1997) Novel Ca2+/-calmodulin-dependent protein kinase II γ-subunit variants expressed in vascular smooth muscle, brain, and cardiomyocytes. J Biol Chem 272:9393–9400

    PubMed  CAS  Google Scholar 

  • Sobieszek A (1977) Vertebrate smooth muscle myosin: Enzymatic and structural properties. The biochemistry of smooth muscle. Winnipeg Symposium, August 1975, pp 413–443

    Google Scholar 

  • Soderling TR, Chang B, Brickey D (2001) Cellular signaling through multifunctional Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 276:3719–3722

    PubMed  CAS  Google Scholar 

  • Sohn UD, Cao W, Tang DC, Stull JT, Haeberle JR, Wang CL, Harnett KM, Behar J, Biancani P (2001) Myosin light chain kinase-and PKC-dependent contraction of LES and esophageal smooth muscle. Am J Physiol Gastrointest Liver Physiol 281:G467–G478

    PubMed  CAS  Google Scholar 

  • Somlyo AV, Franzini-Armstrong C (1985) New views of smooth muscle structure using freezing, deep-etching and rotary shadowing. Experientia 41:841–856

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (1998) From pharmacomechanical coupling to G-proteins and myosin phosphatase. Acta Physiol Scand 164:437–448

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2000) Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and nonmuscle myosin II. J Physiol 522.2:177–185

    Google Scholar 

  • Somlyo AV, Goldman YE, Fujimori T, Bond M, Trentham DR, Somlyo AP (1988) Crossbridge kinetics, cooperativity, and negatively strained crossbridges in vertebrate smooth muscle. A laser-flash photolysis study. J Gen Physiol 91:165–192

    PubMed  CAS  Google Scholar 

  • Srinivasan M, Edman CF, Schulman H (1994) Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J Cell Biol 126:839–852

    PubMed  CAS  Google Scholar 

  • Stepien O, Marche P (2000) Amlodipine inhibits thapsigargin-sensitive Ca(2+) stores in thrombin-stimulated vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 279:H1220–H1227

    PubMed  CAS  Google Scholar 

  • Suematsu E, Resnick M, Morgan KG (1991) Change of Ca2+ requirement for myosin phosphorylation by prostaglandin F2a. Am J Physiol Cell Physiol 261:C253–C258

    CAS  Google Scholar 

  • Suenaga H, Kamata K (2000) Alpha-adrenoceptor agonists produce Ca2+ oscillations in isolated rat aorta: role of protein kinase C. J Smooth Muscle Res 36:205–218

    PubMed  CAS  Google Scholar 

  • Sutherland C, Walsh, MP (1989) Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin. J Biol Chem 264:578–583

    PubMed  CAS  Google Scholar 

  • Taggart MJ (2001) Smooth muscle excitation-contraction coupling: a role for caveolae and caveolins? News Physiol Sci 16:61–65

    PubMed  CAS  Google Scholar 

  • Taggart MJ, Lee Y-H, Morgan KG (1999) Cellular redistribution of PKCα, rhoA, and ROKα following smooth muscle agonist stimulation. Exp Cell Res 251:92–101

    PubMed  CAS  Google Scholar 

  • Taggart MJ, Leavis P, Feron O, Morgan KG (2000) Inhibition of PKCα and RhoA translocation in differentiated smooth muscle by a caveolin scaffolding domain peptide. Exp Cell Res 258:72–81

    PubMed  CAS  Google Scholar 

  • Takahashi K, Hiwada K, Kobuku T (1988) Vascular smooth muscle calponin: a novel troponin T-like protein. Hypertension 11:620–626

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Yamamoto H, Matsumoto K, Kimura T, Katsuragi S, Miyakawa T, Miyamoto E (1999) Nuclear localization of the δ subunit of Ca2+/calmodulin-dependent protein kinase II in rat cerebellar granule cells. J Neurochem 72:815–825

    PubMed  CAS  Google Scholar 

  • Tansey MG, Hori M, Karaki H, Kamm KE, Stull JT (1990) Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle. FEBS Lett 270:219–221

    PubMed  CAS  Google Scholar 

  • Tribe RM, Borin ML, Blaustein MP (1994) Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells. Proc Natl Acad Sci USA 91:5908–5912

    PubMed  CAS  Google Scholar 

  • Tseng S, Kim R, Kim T, Morgan KG, Hai C-M (1997) F-actin disruption attenuates agonist-induced [Ca2+], myosin phosphorylation and force in smooth muscle. Am J Physiol 41:C1960–C1967

    Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    PubMed  CAS  Google Scholar 

  • Van Bavel E, Mulvany MJ (1994) Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries. J Physiol 477:103–115

    Google Scholar 

  • Van Bavel E, Wesselman JPM, Spaan JAE (1998) Myogenic activation and calcium sensitivity of cannulated rat mesenteric small arteries. Circ Res 82:210–220

    Google Scholar 

  • Van Breeman C, Chen Q, Laher I (1995) Superficial buffer barrier function of smooth muscle SR. Trends Pharmacol Sci 16:98–105

    Google Scholar 

  • Van Zweiten PA, Pfaffendorf M (1993) Pharmacology of the dihydropyridine calcium antagonists: relationship between lipophilicity and pharmacodynamic responses. J Hypertens 11 [Suppl 6]:S3–S8

    Google Scholar 

  • Vyas TB, Mooers SU, Narayan SR, Witherell JC, Siegman MJ, Butler TM (1992) Cooperative activation of myosin by light chain phosphorylation in permeabilized smooth muscle. Am J Physiol 263:C210–C219

    PubMed  CAS  Google Scholar 

  • Wagner PD, George JN (1986) Phosphorylation of thymus myosin increases its apparent affinity for actin but not its maximum ATPase rate. Biochemistry 25:913–918

    PubMed  CAS  Google Scholar 

  • Wang Z, Jiang H, Yang Z-Q, Chacko S (1997) Both N-terminal myosin-binding and C-terminal actin binding sites on smooth muscle caldesmon are required for caldesmon-mediated inhibition of actin filament velocity. Proc Natl Acad Sci USA 94:11899–11904

    PubMed  CAS  Google Scholar 

  • Watts SW (1996) Serotonin activates the mitogen-activated protein kinase pathway in vascular smooth muscle: use of the mitogen-activated protein kinase kinase inhibitor PD098059. J Pharmacol Exp Ther 279:1541–1550

    PubMed  CAS  Google Scholar 

  • Weber LP, Van Lierop JE, Walsh MP (1999) Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. J Physiol 516(Pt 3):805–824

    PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    PubMed  CAS  Google Scholar 

  • Wier WG, Balke CW, Michael JA, Mauban JRH (2000) A custom confocal and two-photon digital laser scanning microscope Am J Physiol 278:H2150–H2156

    CAS  Google Scholar 

  • Wills FL, McCubbin WD, Kay CM (1993) Characterization of the smooth muscle calponin and calmodulin complex. Biochemistry 32:2321–2328

    PubMed  CAS  Google Scholar 

  • Wilson DP, Sutherland C, Walsh MP (2002) Ca2+ activation of smooth muscle contraction. J Biol Chem 277:2186–2192

    PubMed  CAS  Google Scholar 

  • Winder SJ, Walsh MP (1990) Smooth muscle calponin: inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem 265:10148–10155

    PubMed  CAS  Google Scholar 

  • Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T (2001) Expression of CPI-17 and myosin phosphatase correlates with Ca2+ sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J Physiol 535(Pt 2):553–564

    PubMed  CAS  Google Scholar 

  • Wuytack F, Raeymaekers L, De Smedt H, Eggermont JA, Missiaen L, Van Den BL, De Jaegere S, Verboomen H, Plessers L, Casteels R (1992) Ca(2+)-transport ATPases and their regulation in muscle and brain. Ann N Y Acad Sci 671:82–91

    PubMed  CAS  Google Scholar 

  • Xiao D, Zhang L (2002) ERK MAP kinases regulate smooth muscle contraction in ovine uterine artery: effect of pregnancy. Am J Physiol Heart Circ Physiol 282:H292–H300

    PubMed  CAS  Google Scholar 

  • Xu Q, Liu Y, Gorospe M, Udelsman R, Holbrook NJ (1996) Acute hypertension activates mitogen-activated protein kinases in arterial wall. J Clin Invest 97:508–514

    PubMed  CAS  Google Scholar 

  • Yamboliev IA, Hedges JC, Mutnick JL-M, Adam LP, Gerthoffer WT (2000) Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am J Physiol Heart Circ Physiol 278:H1899–H1907

    PubMed  CAS  Google Scholar 

  • Yoshikawa H, Taniguchi S-I, Yamamura H, Mori S, Sugimoto M, Miyado K, Nakamura K, Nakao K, Katsuki M, Shibata N, Takahashi K (1998) Mice lacking smooth muscle calponin display increased bone formation that is associated with enhancement of bone morphogenetic protein responses. Genes Cells 3:685–695

    PubMed  CAS  Google Scholar 

  • Zang W-J, Balke CW, Wier WG (2001) Graded α1-adrenoceptor activation of arteries involves recruitment of smooth muscle cells to produce “all or none” Ca2+ signals. Cell Calcium 29:327–334

    PubMed  CAS  Google Scholar 

  • Zelcer E, Sperelakis, N (1982) Spontaneous electrical activity in pressurized small mesenteric arteries. Blood Vessels 19:301–310

    PubMed  CAS  Google Scholar 

  • Zhang J, Wier WG, Blaustein MP (2002) Mg2+ blocks myogenic tone but not K+-induced constriction: role for SOCs in small arteries. Am J Physiol 283:H2692–H2705

    CAS  Google Scholar 

  • Zhong H, Minneman KP (1999) α1-Adrenoceptor subtypes. Eur J Pharm 375:261–276

    CAS  Google Scholar 

  • Zhuang S, Mabuchi K, Wang C-LA (1996) Heat treatment could affect the biochemical properties of caldesmon. J Biol Chem 271:30242–30248

    PubMed  CAS  Google Scholar 

  • Zimmermann B, Somlyo AV, Ellis-Davis GCR, Kaplan JH, Somlyo AP (1995) Kinetics of prephosphorylation reactions and myosin light chain phosphorylation in smooth muscle. J Biol Chem 270:23966–23974

    PubMed  CAS  Google Scholar 

  • Zou H, Ratz PH, Hill MA (2000) Temporal aspects of Ca2+ and myosin phosphorylation during myogenic and norepinephrine-induced arteriolar constriction. J Vasc Res 37:556–567

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Wier .

Electronic Supplementary Material

Ca2+ waves in the muscle cells of rat resistance arteries during α1-adrenoceptor activation.

Video clip shows effect of phenylephrine (5.0 µM) on Ca+ in a rat mesenteric small atery (* indicates presence of drug)

MPEG Video (2.2 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag

About this chapter

Cite this chapter

Wier, W.G., Morgan, K.G. (2003). α1-Adrenergic signaling mechanisms in contraction of resistance arteries. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s10254-003-0019-8

Download citation

  • DOI: https://doi.org/10.1007/s10254-003-0019-8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20214-1

  • Online ISBN: 978-3-540-45207-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics