Skip to main content

Advertisement

Log in

Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models

  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Static and modal responses of representative biomechanical structures are investigated in this paper by employing higher-order theories of structures and finite element approximations. Refined models are implemented in the domain of the Carrera unified formulation (CUF), according to which low- to high-order kinematics can be postulated as arbitrary and, eventually, hierarchical expansions of the generalized displacement unknowns. By using CUF along with the principle of virtual work, the governing equations are expressed in terms of fundamental nuclei of finite element arrays. The fundamental nuclei are invariant of the theory approximation order and can be opportunely employed to implement variable kinematics theories of bio-structures. In this work, static and free-vibration analyses of an atherosclerotic plaque of a human artery and a dental prosthesis are discussed. The results from the proposed methodologies highlight a number of advantages of CUF models with respect to already established theories and commercial software tools. Namely, (i) CUF models can represent correctly the higher-order phenomena related to complex stress/strain field distributions and coupled mode shapes; (ii) bio-structures can be modeled in a component-wise sense by only employing the physical boundaries of the problem domain and without making any geometrical simplification. This latter aspect, in particular, can be currently accomplished only by using three-dimensional analysis, which may be computationally unbearable as complex bio-systems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proceedings of the international modal analysis conference, pp 110–116, Orlando, Florida, USA

  • Balzani D, Brinkhues S, Holzapfel G (2012) Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput Methods Appl Mech Eng 213:139–151

  • Brady A (1979) Mechanical properties of cardiac fibers. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology. Sec. 2, the cardiovascular system, vol 1. American Physiology Society, Bethesda, pp 461–474

    Google Scholar 

  • Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Archives Comput Methods Eng 10(3):215–296

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera E, Giunta G (2010) Refined beam theories based on Carreras unified formulation. Int J Appl Mech 2(1):117–143

    Article  Google Scholar 

  • Carrera E, Pagani A (2014) Free vibration analysis of civil engineering structures by component-wise models. J Sound Vib 333(19):4597–4620

    Article  Google Scholar 

  • Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47(3):537–556

    Article  MathSciNet  MATH  Google Scholar 

  • Carrera E, Maiarú M, Petrolo M (2012) Component-wise analysis of laminated anisotropic composites. Int J Solids Struct 49:1839–1851

    Article  Google Scholar 

  • Carrera E, Maiarú M, Petrolo M, Giunta G (2013) A refined 1D element for the structural analysis of single and multiple fiber/matrix cells. Compos Struct 96:455–468

    Article  Google Scholar 

  • Carrera E, Pagani A, Petrolo M (2013) Classical, refined and component-wise theories for static analysis of reinforced-shell wing structures. AIAA J 51(5):1255–1268

    Article  Google Scholar 

  • Carrera E, Pagani A, Petrolo M (2013) Component-wise method applied to vibration of wing structures. J Appl Mech 80(4):041012 1–041012 15

    Article  Google Scholar 

  • Carrera E, Cinefra M, Petrolo M, Zappino E (2014) Finite element analysis of structures through unified formulation. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Carrera E, Pagani A, Petrolo M (2014) Refined 1D finite elements for the analysis of secondary, primary, and complete civil engineering structures. J Struct Eng 141(4):04014123

    Article  Google Scholar 

  • Carrera E, Pagani A, Petrolo M, Zappino E (2015) Recent developments on refined theories for beams with applications. Mech Eng Rev 2(2):1–30

    Article  Google Scholar 

  • Carrera E, de Miguel AG, Pagani A (2017) Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. Int J Mech Sci 120:286–300

    Article  Google Scholar 

  • Carrera E, Filippi M (2014) Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials. J Eng Gas Turbines Power, 136(9), doi:10.1115/1.4027192

  • Carrera E, Zappino E (2017) One-dimensional finite element formulation with node-dependent kinematics. Submitted

  • Chai CK, Akyildiz AC, Speelman L, Gijsen FJ, Oomens CW, van Sambeek MR, van der Lugt A, Baaijens FP (2013) Local axial compressive mechanical properties of human carotid atherosclerotic plaques/characterisation by indentation test and inverse finite element analysis. J Biomech 46(10):1759–1766

    Article  Google Scholar 

  • Chaiapasco M, Abati S, Romeo E, Vogel G (2001) Implant/retained mandibular overdentures with Branemark system MKII implants: a prospective comparative study between delayed and immediate loading. Int J Oral Maxillofac Implants 16(4):537–546

    Google Scholar 

  • Dilek O, Tezulas E, Dincel M (2008) Required minimum primary stability and torque values for immediate loading of mini dental implants: an experimental study in nonviable bovine femoral bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 105(2):20–27

    Article  Google Scholar 

  • Edman KAP, Nilsson E (1968) The mechanical parameters of myocardial contraction studied at a constant length of the contractile element. Acta Physiol 72:205–219

    Google Scholar 

  • Evans FG (1961) Biomechanical studies of musculo-skeletal system. Charles C. Thomas, Springfield

    Google Scholar 

  • Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Method Appl Mech Eng 191(6–7):561–582

    Article  MathSciNet  MATH  Google Scholar 

  • Frank JS, Langer GA (1974) The myocardial interstitium: its structure and its role in ionic exchange. J Cell Biol 60:596–601

    Article  Google Scholar 

  • Frost HM (1963) Bone remodelling dynamics. Charles C. Thomas, Springfield

    Google Scholar 

  • Fung YC (1970) Mathematical representation of the mechanical properties of the heart muscle. J Biomech 3:381–404

    Article  Google Scholar 

  • Fung YC (1990) Biomechanics: motion, flow, stress and growth. Springer, Berlin

    Book  MATH  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, Berlin

    Book  Google Scholar 

  • Fung YC (1997) Biomechanics: circulation. Springer, Berlin

    Book  Google Scholar 

  • Geng J, Tan KBC, Liu G (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85:585–598

    Article  Google Scholar 

  • Hatze H (1977) A complete set of control equations for the human musculo-skeletal system. J Biomech 10:799–805

    Article  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond 126:136–195

    Article  Google Scholar 

  • Holzapfel GA, Stadler M, Schulze-Bauer CAJ (2002) A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann Biomed Eng 30(6):753–767

    Article  Google Scholar 

  • Holzapfel G, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126:657–665

    Article  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  Google Scholar 

  • Kayabasi O, Yuzbasioglu E, Erzincanli F (2006) Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Softw 37:649–658

    Article  Google Scholar 

  • Lawlor MG, O’Donnell MR, O’Connell BM, Walsh MT (2011) Experimental determination of circumferential properties of fresh carotid artery plaques. J Biomech 44(9):1709–1715

    Article  Google Scholar 

  • Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  Google Scholar 

  • Maher E, Creane A, Sultan S, Hynes N, Lally C, Kelly DJ (1996) Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J Biomech 59(4):613–621

    Google Scholar 

  • Pagani A, Boscolo M, Banerjee JR, Carrera E (2013) Exact dynamic stiffness elements based on one-dimensional higher-order theories for free vibration analysis of solid and thin-walled structures. J Sound Vib 332(23):6104–6127

    Article  Google Scholar 

  • Pagani A, de Miguel AG, Petrolo M, Carrera E (2016) Analysis of laminated beams via unified formulation and Legendre polynomial expansions. Compos Struct 156:78–92

    Article  Google Scholar 

  • Petrolo M, Carrera E, Giunta G (2011) Beam structures: classical and advanced theories. Wiley, New York

    MATH  Google Scholar 

  • Pilliar RM, Deporter DA, Watson PA, Valiquette N (1991) Dental implant design/effect on bone remodeling. J Biomed Mater Res 25(4):467–483

    Article  Google Scholar 

  • Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R (2013) Pathophysiology of atherosclerosis plaque progression. Heart, Lung Circ 22(6):399–411

    Article  Google Scholar 

  • Schultz AB (1986) Loads on the human lumbar spine. Mech Eng 108:36–41

    Google Scholar 

  • Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami T, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo mri-based 2d/3d fsi models. J Biomech 41(4):727–736

    Article  Google Scholar 

  • Vaillancourt H, Pillar RM, McCammond D (1996) Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants 11(3):351–359

    Google Scholar 

  • Van Oosterwyck H, Duyck J, Vander Sloten J, Van der Perre G, De Cooman M, Lievens S, Puers R, Naert I (1998) The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res 36:1017–1043

    Google Scholar 

  • Varello A, Carrera E (2014) Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models. Smart Struct Syst 13(4):659–683

    Article  Google Scholar 

  • Wider GE, Tesk JA, Privitzer E (1976) Interaction effects among cortical bone, cancellous bone, and periodontal membrane of natural teeth and implants. J Biomed Mater Res 10(4):613–623

  • Zappino E, Carrera E, Rowe S, Mangeot C, Marques H (2016) Numerical analyses of piezoceramic actuators for high temperature applications. Compos Struct 151:36–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carrera.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrera, E., Guarnera, D. & Pagani, A. Static and free-vibration analyses of dental prosthesis and atherosclerotic human artery by refined finite element models. Biomech Model Mechanobiol 17, 301–317 (2018). https://doi.org/10.1007/s10237-017-0961-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-017-0961-z

Keywords

Navigation