Skip to main content
Log in

Numerical studies on alternative therapies for femoral head necrosis

A finite element approach and clinical experience

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Numerical investigations with regard to the subtrochanteric fracture risk induced by three alternative methods for the treatment of femoral head necrosis are outlined in this presentation. The traditional core decompression technique will be compared with minimal invasive multiple low diameter drillings and the implantation of an innovative tantalum implant. With emphasis to the newly introduced computational strategies and modeling approaches, the modeling of critical loading conditions as well as mesh convergence is outlined in detail. In addition to the immediate postoperative fracture risk, the long-term stability of the different approaches for treating femoral head necrosis is predicted by performing well-established bone remodeling simulation techniques. The computed results are augmented for results obtained from clinical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldegheri R, Taglialavoro G, Berizzi A (2007) The tantalum screw for treating femoral head necrosis: rationale and results. Strategies Trauma Limb Reconstr 2(2–3): 63–68

    Article  Google Scholar 

  • Andreykiv A, Prendergast PJ, van Keulen F, Swieszkowski W, Rozing PM (2005) Bone ingrowth simulation for a concept glenoid component design. J Biomech 38(5): 1023–1033

    Article  Google Scholar 

  • Association Research Circulation Osseous: (1992) Committee on terminology and classification. ARCO News 4: 41–46

    Google Scholar 

  • Baca V, Horak Z, Mikulenka P, Dzupa V (2008) Comparison of an inhomogeneous orthotropic and isotropic material models used for fe analyses. Med Eng Phys 30(7): 924–930

    Article  Google Scholar 

  • Backman S (1957) The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol Suppl 146: 1–166

    Google Scholar 

  • Baker KJ, Brown TD, Brand RA (1989) A finite-element analysis of the effects of intertrochanteric osteotomy on stresses in femoral head osteonecrosis. Clin Orthop Relat Res 249: 183–198

    Google Scholar 

  • Bergmann G, Graichen F, Rohlmann A (2004) Hip joint contact forces during stumbling. Langenbecks Arch Surg 389(1): 53–59

    Article  Google Scholar 

  • Bergmann Ge (2008) http://www.OrthoLoad.com

  • Brown TD, Pedersen DR, Baker KJ, Brand RA (1993) Mechanical consequences of core drilling and bone-grafting on osteonecrosis of the femoral head. J Bone Joint Surg Am 75(9): 1358–1367

    Google Scholar 

  • Burstein AH, Reilly DT (1973) Failure characteristics of bone and bone tissue. University Park Press, Baltimore, pp 131–134

    Google Scholar 

  • Burstein AH, Reilly DT, Martens M (1976) Aging of bone tissue: mechanical properties. J Bone Joint Surg Am 58(1): 82–86

    Google Scholar 

  • Camp JF, Colwell CW (1986) Core decompression of the femoral head for osteonecrosis. J Bone Joint Surg Am 68(9): 1313–1319

    Google Scholar 

  • Collaborative Osteonecrosis Group (1999) Symptomatic multifocal osteonecrosis. a multicenter study. Collaborative osteonecrosis group. Clin Orthop Relat Res 369: 312–326

    Google Scholar 

  • Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77(3): 387–395

    Google Scholar 

  • Currey JD (2001) Bone strength: what are we trying to measure. Calcif Tissue Int 68(4): 205–210

    Article  Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton

    Google Scholar 

  • Dempster WT, Liddicoat RT (1952) Compact bone as a non-isotropic material. Am J Anat 91(3): 331–362

    Article  Google Scholar 

  • Fisher K, Jacobs R, Carter D (1995) Computational method for determination of bone and joint loads using bone density distributions. J Biomech 28: 1127–1135

    Article  Google Scholar 

  • Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. an end-result study using a new method of result evaluation. J Bone Joint Surg Am 51(4): 737–755

    Google Scholar 

  • Heller MO, Bergmann G, Deuretzbacher G, Drselen L, Pohl M, Claes L, Haas NP, Duda GN (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34(7): 883–893

    Article  Google Scholar 

  • Kato H, Nakamura T, Nishiguchi S, Matsusue Y, Kobayashi M, Miyazaki T, Kim HM, Kokubo T (2000) Bonding of alkali- and heat-treated tantalum implants to bone. J Biomed Mater Res 53(1): 28–35

    Article  Google Scholar 

  • Kerboul M, Thomine J, Postel M, d’Aubign RM (1974) The conservative surgical treatment of idiopathic aseptic necrosis of the femoral head. J Bone Joint Surg Br 56(2): 291–296

    Google Scholar 

  • Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone ingrowth. J Arthroplasty 14(3): 355–368

    Article  Google Scholar 

  • Ko R (1953) The tension test upon the compact substance of the long bones of human extremities. J Kyoto Pref Med Univ 53: 503–525

    Google Scholar 

  • Lee MS, Tai CL, Senan V, Shih CH, Lo SW, Chen WP (2006) The effect of necrotic lesion size and rotational degree on the stress reduction in transtrochanteric rotational osteotomy for femoral head osteonecrosis—a three-dimensional finite-element simulation. Clin Biomech (Bristol, Avon) 21(9): 969–976

    Article  Google Scholar 

  • Levine BR, Sporer S, Poggie RA, Valle CJD, Jacobs JJ (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27(27): 4671–4681

    Article  Google Scholar 

  • Lian ZQ, Gu YX, Zhang HW (2008) Subject-specific finite element simulation of bone grafting procedure for osteonecrosis of femoral head. Multidiscip Model Mater Struct 4: 359–368

    Google Scholar 

  • Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am 72(5): 689–700

    Google Scholar 

  • Lutz A, Nackenhorst U (2007) Computation of static-equivalent load sets for bone remodeling simulation. PAMM 7(1): 4020,007–4020,008

    Article  Google Scholar 

  • Lutz A, Nackenhorst U (2009) Numerical investigations on the biomechanical compatibility of hip-joint endoprostheses. Arch Appl Mech

  • Martin BR, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, http://www.worldcat.org/isbn/0387984747

  • McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21(4): 1231–1236

    Google Scholar 

  • Mont MA, Hungerford DS (1995) Non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg Am 77(3): 459–474

    Google Scholar 

  • Mont MA, Ragland PS, Etienne G (2004) Core decompression of the femoral head for osteonecrosis using percutaneous multiple small-diameter drilling. Clin Orthop Relat Res 429(429): 131–138

    Article  Google Scholar 

  • Nackenhorst U (2007) Biomechanics of bones: modeling and computation of bone remodeling in handbook of biomineralization, Chap. 3. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 35–48

    Google Scholar 

  • Nadeau M, Sguin C, Theodoropoulos JS, Harvey EJ (2007) Short term clinical outcome of a porous tantalum implant for the treatment of advanced osteonecrosis of the femoral head. Mcgill J Med 10(1): 4–10

    Google Scholar 

  • Peng L, Bai J, Zeng X, Zhou Y (2006) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 28(3): 227–233

    Article  Google Scholar 

  • Penix AR, Cook SD, Skinner HB, Weinstein AM, Haddad RJ (1983) Femoral head stresses following cortical bone grafting for aseptic necrosis. a finite element study. Clin Orthop Relat Res 173: 159–165

    Google Scholar 

  • Sedlin ED, Hirsch C (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37(1): 29–48

    Article  Google Scholar 

  • Shuler MS, Rooks MD, Roberson JR (2007) Porous tantalum implant in early osteonecrosis of the hip: preliminary report on operative, survival, and outcomes results. J Arthroplasty 22(1): 26–31

    Article  Google Scholar 

  • Smith SW, Fehring TK, Griffin WL, Beaver WB (1995) Core decompression of the osteonecrotic femoral head. J Bone Joint Surg Am 77(5): 674–680

    Google Scholar 

  • Steinberg ME, Larcom PG, Strafford B, Hosick WB, Corces A, Bands RE, Hartman KE (2001) Core decompression with bone grafting for osteonecrosis of the femoral head. Clin Orthop Relat Res 386(386): 71–78

    Article  Google Scholar 

  • Tooke SM, Nugent PJ, Bassett LW, Nottingham P, Mirra J, Jinnah R (1988) Results of core decompression for femoral head osteonecrosis. Clin Orthop Relat Res 228(228): 99–104

    Google Scholar 

  • Tsao AK, Roberson JR, Christie MJ, Dore DD, Heck DA, Robertson DD, Poggie RA (2005) Biomechanical and clinical evaluations of a porous tantalum implant for the treatment of early-stage osteonecrosis. J Bone Joint Surg Am 87(Suppl 2): 22–27

    Article  Google Scholar 

  • Urbaniak JR, Coogan PG, Gunneson EB, Nunley JA (1995) Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. a long-term follow-up study of one hundred and three hips. J Bone Joint Surg Am 77(5): 681–694

    Google Scholar 

  • Veillette CJH, Mehdian H, Schemitsch EH, McKee MD (2006) Survivorship analysis and radiographic outcome following tantalum rod insertion for osteonecrosis of the femoral head. J Bone Joint Surg Am 88(Suppl 3): 48–55

    Article  Google Scholar 

  • Volokh KY, Yoshida H, Leali A, Fetto JF, Chao EYS (2006) Prediction of femoral head collapse in osteonecrosis. J Biomech Eng 128(3): 467–470

    Article  Google Scholar 

  • von Stechow D, Drees P (2007) Operative therapiekonzepte der zukunft. Der Orthopde 36: 451–457

    Article  Google Scholar 

  • Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R (2000) Critical evaluation of known bone material properties to realize anisotropic fe-simulation of the proximal femur. J Biomech 33(10): 1325–1330

    Article  Google Scholar 

  • Yang JW, Koo KH, Lee MC, Yang P, Noh MD, Kim SY, Kim KI, Ha YC, Joun MS (2002) Mechanics of femoral head osteonecrosis using three-dimensional finite element method. Arch Orthop Trauma Surg 122(2): 88–92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, A., Nackenhorst, U., von Lewinski, G. et al. Numerical studies on alternative therapies for femoral head necrosis. Biomech Model Mechanobiol 10, 627–640 (2011). https://doi.org/10.1007/s10237-010-0261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0261-3

Keywords

Navigation