Skip to main content
Log in

A hybrid bioregulatory model of angiogenesis during bone fracture healing

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Bone fracture healing is a complex process in which angiogenesis or the development of a blood vessel network plays a crucial role. In this paper, a mathematical model is presented that simulates the biological aspects of fracture healing including the formation of individual blood vessels. The model consists of partial differential equations, several of which describe the evolution in density of the most important cell types, growth factors, tissues and nutrients. The other equations determine the growth of blood vessels as a result of the movement of leading endothelial (tip) cells. Branching and anastomoses are accounted for in the model. The model is applied to a normal fracture healing case and subjected to a sensitivity analysis. The spatiotemporal evolution of soft tissues and bone, as well as the development of a blood vessel network are corroborated by comparison with experimental data. Moreover, this study shows that the proposed mathematical framework can be a useful tool in the research of impaired healing and the design of treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A, Chaplain M (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60: 857–900

    Article  MATH  Google Scholar 

  • Bailón-Plaza A, Van der Meulen M (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212: 191–209

    Article  Google Scholar 

  • Barnes G, Kostenuik P, Gerstenfeld L, Einhorn T (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14(11): 1805–1815

    Article  Google Scholar 

  • Bernatchez P, Soker S, Sirois M (1999) Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 274(43): 31,047–31,054

    Article  Google Scholar 

  • Bostrom M (1998) Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res 355S: S116–S123

    Article  Google Scholar 

  • Bruder S, Scaduto T (2005) Cell-based strategies for bone regeneration: from developmental biology to clinical therapy. In: bone regeneration and repair. Humana Press, pp 67–92. doi:10.1385/1-59259-863-3:067

  • Carmeliet P, Jain R (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257

    Article  Google Scholar 

  • Carter D, Beaupré G, Giori N, Helms J (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 3558: S41–S55

    Article  Google Scholar 

  • Checa S, Prendergast P (2008) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Engin 37(1): 129–145

    Article  Google Scholar 

  • Chen G, Niemeyer F, Wehner T, Simon U, Schuetz M, Pearcy M, Claes L (2009) Simulation of the nutrient supply in fracture healing. J Biomech 42(15): 2575–2583

    Article  Google Scholar 

  • Claes L, Heigele C (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3): 255–266

    Article  Google Scholar 

  • Colnot C, Thompson Z, Miclau T, Werb Z, Helms J (2003) Altered fracture repair in the absence of MMP9. Development 130: 4123–4133

    Article  Google Scholar 

  • De Smet F, Segura I, De Bock K, Hohensinner P, Carmeliet P (2009) Mechanisms of vessel branching. Arter Thromb Vasc Biol 29: 639–649. doi:10.1161/ATVBAHA.109.185165

    Article  Google Scholar 

  • Dimitriou R, Tsiridis E, Giannoudis P (2005) Current concepts of molecular aspects of bone healing. Injury 36(12): 1392–1404

    Article  Google Scholar 

  • Duvall C, Taylor W, Weiss D, Wojtowicz A, Guldberg R (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22(2): 286–297

    Article  Google Scholar 

  • Fiedler J, Etzel N, Brenner R (2004) To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF. J Cell Biomech 93: 990–998

    Article  Google Scholar 

  • Fiedler J, Leucht F, Waltenberger J, Dehio C, Brenner R (2005) VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Comm 334: 561–568

    Article  Google Scholar 

  • Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 25: 137–158

    Article  Google Scholar 

  • Geris L, Vander Sloten J, Van Oosterwyck H (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobio. doi:10.1007/s10237-010-0208-8

  • Gerisch A, Chaplain M (2006) Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems. Math Comput Model 43: 49–75

    Article  MathSciNet  MATH  Google Scholar 

  • Gerisch A, Geris L (2007) Advances in mathematical modeling of biological systems, vol 1, Deutsch A, Brusch L, Byrne H, de Vries G, Herzel H-P, Boston, chap A finite volume spatial discretisation for taxis-diffusion-reaction systems with axi-symmetry: application to fracture healing. pp 303–316

  • Gerstenfeld L, Cullinane D, Barnes G, Graves D, Einhorn T (2003) Fracture healing as a post-natal developmental proces: molecular, spatial, and temporal aspects of its regulations. J Cell Biochem 88: 873–884

    Article  Google Scholar 

  • Harrison L, Cunningham F, Srömberg L, Goodship A (2003) Controlled induction of a pseudarthrosis: a study using a rodent model. J Orthop Trauma 17: 11–21

    Article  Google Scholar 

  • Hirao M, Tamai N, Tsumaki N, Yoshikawa H, Myoui A (2006) Oxygen tension regulates chondrocyte differentiation and function during endochondral ossification. J Biol Chem 291(41): 31,079–31,092

    Google Scholar 

  • Lind M, Eriksen E, Bunger C (1996) Bone morphogenetic protein-2 but not bone morphogenetic protein-4 and 6 stimulates chemotactic migration of human osteoblasts, human marrow osteoblasts and U2-OS cells. Bone 18: 53–57

    Article  Google Scholar 

  • MacDougall J, McCabe M (1967) Diffusion coefficient of oxygen through tissues. Nature 215: 1173–1174

    Article  Google Scholar 

  • Marsh D (1998) Concepts of fraction union, delayed union, and nonunion. Clin Orthop Relat Res S355: S22–S30

    Article  Google Scholar 

  • Mayer H, Bertram H, Lindenmaier W, Korff T, Weber H, Weich H (2005) Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem 95: 827–839

    Article  Google Scholar 

  • Metheny-Barlow L, Tian S, Hayes A, Li L (2004) Direct chemotactic action of angiopoietin-1 on mesenchymal cells in the presence of VEGF. Microvasc Res 68: 221–230

    Article  Google Scholar 

  • Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Comm 199: 380–386

    Article  Google Scholar 

  • Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95: 3146–3160

    Article  Google Scholar 

  • Olsen L, Sherratt J, Maini P, Arnold F (1997) A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14: 261–281

    Article  MATH  Google Scholar 

  • Qutub A, Popel A (2009) Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol 3(13). doi:10.1186/1752-0509-3-13

  • Ryser M, Nigam N, Komarova S (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Miner Res 24(5): 860–870

    Article  Google Scholar 

  • Seeherman H, Li R, Wozney J (2003) A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Joint Surg 85: 96–108

    Google Scholar 

  • Shefelbine S, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38(12): 2440–2450

    Article  Google Scholar 

  • Sherrat J (1994) Chemotaxis and chemokinesis in eukaryotic cells: the keller-segel equations as an approximation to a detailed model. Bull Math Biol 56: 129–146

    Google Scholar 

  • Street J, Bao M, deGuzman L, Bunting S, Peale FJ, Ferrara N, Steinmetz H, Hoeffel J, Cleland J, Daugherty A, van Bruggen N, Redmond H, Carano R, Filvaroff E (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS 99(15): 9656–9661

    Article  Google Scholar 

  • Sun S, Wheeler M, Obeyesekere M, Patrick CJ (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67: 313–337

    Article  MathSciNet  Google Scholar 

  • Taguchi K, Ogawa R, Migata M, Hanawa H, Ito H, Orimo H (2005) The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model. Biochem Biophys Res Comm 331: 31–36

    Article  Google Scholar 

  • Weinberg C, Bell E (1985) Regulation of proliferation of bovine aortic endothelial cells, smooth muscle cells and adventitial fibroblasts in collagen lattices. J Cell Physiol 122: 410–414

    Article  Google Scholar 

  • Weiner R, Schmitt B, Podhaisky H (1997) ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl Numer Math 25: 303–319

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshizato K, Taira T, Yamamoto N (1985) Growth inhibition of human fibroblasts by reconstituted collagen fibrils. Biomed Res 6: 61–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Véronique Peiffer or Liesbet Geris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peiffer, V., Gerisch, A., Vandepitte, D. et al. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10, 383–395 (2011). https://doi.org/10.1007/s10237-010-0241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0241-7

Keywords

Navigation