Skip to main content

Advertisement

Log in

Computational modeling of healing: an application of the material force method

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The basic aim of the present contribution is the qualitative simulation of healing phenomena typically encountered in hard and soft tissue mechanics. The mechanical framework is provided by the theory of open system thermodynamics, which will be formulated in the spatial as well as in the material motion context. While the former typically aims at deriving the density and the spatial motion deformation field in response to given spatial forces, the latter will be applied to determine the material forces in response to a given density and material deformation field. We derive a general computational framework within the finite element context that will serve to evaluate both the spatial and the material motion problem. However, once the spatial motion problem has been solved, the solution of the material motion problem represents a mere post-processing step and is thus extremely cheap from a computational point of view. The underlying algorithm will be elaborated systematically by means of two prototype geometries subjected to three different representative loading scenarios, tension, torsion, and bending. Particular focus will be dedicated to the discussion of the additional information provided by the material force method. Since the discrete material node point forces typically point in the direction of potential material deposition, they can be interpreted as a driving force for the healing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ambrosi D, Mollica F (2002) On the mechanics of a growing tumor. Int J Eng Sc 40:1297–1316

    Article  Google Scholar 

  2. Askes H, Kuhl E, Steinmann P (2003) Arbitrary Lagrangian–Eulerian (ALE) mesh optimization by equilibration of discrete material forces. In: Onate E, Owen DRJ (eds) Proceedings of COMPLAS VII, Barcelona, Spain, 7–10 April 2003. CIMNE, Barcelona, Spain

  3. Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modelling and remodelling. J Orthop Res 8:651–670

    PubMed  Google Scholar 

  4. Bowen RM (1976) Theory of mixtures. In: Eringen AC (ed) Continuum physics. vol III. Mixtures and EM field theories. Academic Press, New York, pp 1–127

  5. Carter DR, GS Beaupré (2001) Skeletal function and form—mechanobiology of skeletal development, aging and regeneration. Cambridge University Press, Cambridge

  6. Carter DR, Orr TE, Fhyrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22:231–244

    CAS  PubMed  Google Scholar 

  7. Cowin SC (1996) Strain or deformation rate dependent finite growth in soft tissues. J Biomech 29:647–649

    CAS  PubMed  Google Scholar 

  8. Cowin SC, Hegedus DH (1976) Bone remodelling. I: Theory of adaptive elasticity. J. Elasticity 6:313–326

    Google Scholar 

  9. Cowin SC, Humphrey JD (2001) Cariovascular soft tissue mechanics. Wiley, Chichester

  10. Denzer R, Barth FJ, Steinmann P (2003) Studies in elastic fracture mechanics based on the material force method. Int J Num Meth Eng 58:1817–1835

    Article  Google Scholar 

  11. Ehlers W (1996) Grundlegende Konzepte in der Theorie poröser Medien. Tech Mech 16:63–76

    Google Scholar 

  12. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plasticity 16:951–978

    Article  Google Scholar 

  13. Eshelby JD (1951) The force on an elastic singularity. Phil Trans R Soc Lond 244:87–112

    Google Scholar 

  14. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A 241:376–396

    Google Scholar 

  15. Fung YC (1990) Biomechanics—motion, flow, stress, and growth. Springer, Berlin Heidelberg New York

  16. Fung YC (1993) Biomechanics—mechanical properties of living tissues, 2nd edn. Springer, Berlin Heidelberg New York

  17. Garikipati K (2003) Material forces in the context of bio-tissue remodelling. In: Steinmann P, Maugin GA (ed) Mechanics of material forces. Kluwer, Dordrecht

  18. Gasser TC, Holzapfel GA (2002) A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput Mech 29:340–360

    Article  Google Scholar 

  19. Govindjee S (2001) Firestone tire analysis. Internal Report, Lafayette, CA. http://www.ce.berkeley.edu/~sanjay/

  20. de Groot SR (1951) Thermodynamics of irreversible processes. North-Holland, Amsterdam

  21. de Groot SR, Mazur P (1962) Non-equilibrium thermodynamics. North-Holland, Amsterdam

  22. Gurtin ME (1995) On the nature of configurational forces. Arch Rat Mech Anal 131:67–100

    Google Scholar 

  23. Gurtin ME (2000) Configurational forces as basic concepts of continuum physics. Springer, New York Berlin Heidelberg

  24. Harrigan TP, JJ Hamilton (1992) Optimality condition for finite element simulation of adaptive bone remodeling. Int J Solids Structures 29:2897–2906

    Article  Google Scholar 

  25. Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodelling: a stability criterion and a time stepping method. Int J Num Meth Eng 36:837–854

    Google Scholar 

  26. Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    Google Scholar 

  27. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61:1–48

    Article  Google Scholar 

  28. Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16:385–409

    CAS  PubMed  Google Scholar 

  29. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–1150

    CAS  PubMed  Google Scholar 

  30. Humphrey JD (2002) Cardiovasular solid mechanics. Springer, Berlin Heidelberg New York

  31. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Meth Appl Sci 12:407–430

    Google Scholar 

  32. Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, MA

  33. Kestin J (1966) A course in thermodynamics, vol I, 1st edn. Blaisdell, Waltham

  34. Kienzler R, Herrmann G (2000) Mechanics in material space with applications to defect and fracture mechanics. Springer, Berlin Heidelberg New York

  35. Kuhl E, Denzer R, Barth FJ, Steinmann P (2003) Application of the material force method to thermo-hyperelasticity. Int J Num Meth Eng 58:1593–1615

    Article  Google Scholar 

  36. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth: a critical review, a classification of concepts and two new consistent approaches. Comput Mech 32:71–88

    Article  Google Scholar 

  37. Kuhl E, Steinmann P (2003) Mass- and volume specific views on thermodynamics for open systems. Proc R Soc Lond 459:2547–2568

    Article  Google Scholar 

  38. Kuhl E, Steinmann P (2003) Material forces in open system mechanics. Comput Meth Appl Mech Eng (in press)

  39. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically nonlinear open system mechanics. Int J Num Meth Eng 58:1593–1615

    Article  Google Scholar 

  40. Kuhl E, Steinmann P (2003) On spatial and material settings of thermo-hyperelastodynamics for open systems. Acta Mechanica 160:179–217

    Article  Google Scholar 

  41. Liebe T, Denzer R, Steinmann P (2003) Application of the material force method to isotropic continuum damage. Comput Mech 30:171–184

    Article  Google Scholar 

  42. Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Structures 39:4627–4664

    Article  Google Scholar 

  43. Maugin GA (1993) Material inhomogenities in elasticity. Chapman & Hall, London

  44. Maugin GA (1995) Material forces: concepts and applications. Appl Mech Rev 48:213–245

    Google Scholar 

  45. Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviors. World Scientific, Singapore

  46. Müller R, Kolling S, Gross D (2002) On configurational forces in the context of the finite element method. Int J Num Meth Eng 53:1557–1574

    Article  Google Scholar 

  47. Müller R, Maugin GA (2002) On material forces and finite element discretizations. Comput Mech 29:52–60

    Article  Google Scholar 

  48. Murray JD (2003) Mathematical biology, vol II. Spatial models biomedical applications, 3rd edn. Springer, Berlin Heidelberg New York

  49. Pauwels (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer, Berlin Heidelberg New York

  50. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27:455–467

    CAS  PubMed  Google Scholar 

  51. Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. I: Continuum mechanical setting. Int J Solids Structures 37:7371–7391

    Article  Google Scholar 

  52. Steinmann P (2002) On spatial and material settings of hyperelastodynamics. Acta Mech 156:193–218

    Google Scholar 

  53. Steinmann P (2002) On spatial and material settings of hyperelastostatic crystal defects. J Mech Phys Solids 50:1743–1766

    Article  Google Scholar 

  54. Steinmann P (2002) On spatial and material settings of thermo-hyperelastodynamics. J Elasticity 66:109–157

    Article  Google Scholar 

  55. Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. Int J Solids Structures 38:5509–5526

    Article  Google Scholar 

  56. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. ASME Appl Mech Rev 48:487–545

    Google Scholar 

  57. Thompson W (1961) On growth and form, abridged edn. Cambridge University Press, Cambridge

  58. Tong P, Fung YC (2001) Biomechanics of injury and healing. In: Fung YC (ed) Introduction to bioengineering. World Scientific, Singapore, pp 237–264

  59. Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (ed) Handbuch der Physik, vol III/1. Springer, Berlin Heidelberg New York

  60. Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomechanics 25:1425–1441

    CAS  Google Scholar 

  61. Weinans H, Huiskes R, Grootenboer HJ (1994) Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. J Biomech Eng 116:393–400

    CAS  PubMed  Google Scholar 

  62. Wolff J (1892) Das Gesetz der Knochentransformation. Hirschwald, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kuhl.

Additional information

“Blues the healer”, John Lee Hooker [1989]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhl, E., Steinmann, P. Computational modeling of healing: an application of the material force method. Biomech Model Mechanobiol 2, 187–203 (2004). https://doi.org/10.1007/s10237-003-0034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-003-0034-3

Keywords

Navigation