Skip to main content

Advertisement

Log in

Evaluation of a Finite-Element Sea-Ice Ocean Model (FESOM) set-up to study the interannual to decadal variability in the deep-water formation rates

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958–2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Balmaseda MA, Smith GC, Haines K, Anderson D, Palmer TN, Vidard A (2007) Historical reconstruction of the Atlantic Meridional Overturning Circulation from the ECMWF operational ocean reanalysis. Geophys Res Lett 34:L23,615

    Google Scholar 

  • Belkin I (2004) Propagation of the “Great Salinity Anomalies” of the 1990s around the northern North Atlantic. Geophys Res Lett 31:L08,306. doi:10.1029/2003GL019334

    Article  Google Scholar 

  • Belkin I, Levitus S, Antonov J, Malmberg S (1998) “Great Salinity Anomalies” in the North Atlantic. Prog Oceanogr 41:1–68

    Article  Google Scholar 

  • Bersch M (1995) On the circulation of the North Atlantic. Deep-Sea Res, Part 1, Oceanogr Res Pap 42(9):1583–1607

    Article  Google Scholar 

  • Bersch M, Meincke J, Sy A (1999) Interannual thermohaline changes in the northern North Atlantic 1991–1996. Deep-Sea Res, Part 2, Top Stud Oceanogr 46:55–77

    Article  Google Scholar 

  • Bromwich DH, Ryan LF, Hodges KI, Walsh JE (2007) A tropospheric assessment of ERA-40, NCEP, JRA-25 global reanalyses in the polar regions. J Geophys Res 112:D10,111

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017

    Article  Google Scholar 

  • Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (2007) Sea ice concentration from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, January 1979–June 2006. National Snow and Data Center, Digital Media, Boulder, CO, USA

  • Chanut J, Barnier B, Large W, Debreu L, Penduff T, Molines JM, Mathiot P (2008) Mesoscale eddies in the Labrador Sea and their contributions to conversion and restratification. J Phys Oceanogr 38(8):1617–1643

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the atlantic meridional overturning circulation at 26.5n. Science 317(5840):935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Curry R, Dickson B, I Y (2003) A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426:826–829. doi:10.1038/nature02206

    Article  Google Scholar 

  • Danilov S, Kivman G, Schröter J (2004) A finite element ocean model: principles and evaluation. Ocean Model 6:125–150

    Article  Google Scholar 

  • Danilov S, Kivman G, Schröter J (2005) Evaluation of an eddy-permitting finite-element ocean model in the North Atlantic. Ocean Model 10:35–49

    Article  Google Scholar 

  • de Boyer Montegut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12,003. doi:0.1029/2004JC002378

    Article  Google Scholar 

  • Dickson R, Brown J (1994) The production of North Atlantic deep water: sources, rates and pathways. J Geophys Res 99:12319–12341

    Article  Google Scholar 

  • Dickson R, Meincke J, Malmberg SA, Lee AJ (1988) The Great Salinity Anomaly in the Northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151

    Article  Google Scholar 

  • Dickson R, Lazier J, Meinicke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295

    Article  Google Scholar 

  • Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837. doi:10.1038/416832a

    Article  Google Scholar 

  • Döescher R, Redler R (1997) The relative importance of the northern overflow and subpolar deep convection for the North Atlantic Thermohaline Circulation. J Phys Oceanogr 25:1894–1901

    Article  Google Scholar 

  • Edwards MO (1989) Global gridded elevation and bathymetry (ETOPO5), digital raster data on a 5-minute geographic (lat/lon) 2160’4320 (centroid-registered) grid. NOAA Natl Geophys Data Cent, Boulder, CO

    Google Scholar 

  • Eldevik T, Nilsen JEO, Anders Olsson K, Sando AB, Drange H (2009) Observed sources and variability of Nordic seas overflow. Nat Geosci 2(6):406–410

    Article  Google Scholar 

  • Fetterer F, Knowles K, Meier W, Savoie M (2009) Sea ice index. National Snow and Data Center, Digital Media, Boulder, CO. http://www.ndsic.org/data/seaice_index/

    Google Scholar 

  • Fix GJ (1975) Finite-element models for ocean circulation problems. SIAM J Appl Math 29:371–387

    Article  Google Scholar 

  • Ford R, Pain CC, Goddard AJH, de Oliveira CRE, Umpleby AP (2004) A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: model formulation. Mon Weather Rev 132:2816–2844

    Article  Google Scholar 

  • Girton JB, Sanford TB (2001) Synoptic sections of the Denmark Strait Overflow. Geophys Res Lett 28(8):1619–1622

    Article  Google Scholar 

  • Griffies SM, Biastoch A, Böning C, Bryan F, Danabasoglu G, Chassignet EP, England MH, Gerdes R, Haak H, Hallberg RW, Hazeleger W, Jungclaus J, Large WG, Madec G, Pirani A, Samuels BL, Scheinert M, Gupta AS, Severijns CA, Simmons HL, Treguier AM, Winton M, Yeager S, Yin J (2009) Coordinated Ocean-ice Reference Experiments (COREs). Ocean Model 26(1–2):1–46. doi:10.1016/j.ocemod.2008.08.007

    Article  Google Scholar 

  • Haak H, Jungclaus J, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30(9):1473. doi:10.1029/2003GL017065

    Article  Google Scholar 

  • Häkkinen S (2002) Freshening of the Labrador Sea surface waters in the 1990s: another great salinity anomaly?. Geophys Res Lett 29(24):2232. doi:10.1029/2002GL015243

    Article  Google Scholar 

  • Kwok R, Rothrock DA (1999) Variability of Fram Strait ice flux and North Atlantic Oscillation. J Geophys Res 104(C3):5177–5189. doi:10.1029/1998JC900103

    Article  Google Scholar 

  • Large WG, Yeager SG (2008) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 32(2):341–364. doi:10.1007/s00382-008-0441-3

    Google Scholar 

  • Latif M, Böning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendier U (2006) Is the Thermohaline circulation changing? Geophys Res Lett 19(18):4631–4637

    Google Scholar 

  • Lazier JRN (1980) Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974. Atmos-Ocean 18(3):227–238

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP (1994) Interannual variability of temperature at a depth of 125 m in the North Atlantic Ocean. Science 266:96–99

    Article  Google Scholar 

  • Lohmann G, Haak HI, Jungclaus JH (2008) Estimating trends of Atlantic meridional overturning circulation from long-term hydrographic data and model simulations. Ocean Dyn 58:127–138. doi:10.1007/s10236-008-0136-7

    Article  Google Scholar 

  • Macrander A, Send U, Valdimarsson H, Jonsson S, Käse RH (2005) Interannual changes in the overflows from the Nordic Seas into Atlantic Ocean through Denmark Strait. Geophys Res Lett 32:L06,606

    Article  Google Scholar 

  • Macrander A, Käse RH, Send U, Valdimarsson H, Jonsson S (2007) Spatial and temporal structure of the Denmark Strait Overflow revealed by acoustic observations. Ocean Dyn 57:75–89

    Article  Google Scholar 

  • Meier W, Fetterer F, Knowles K, Savoie M, Brodzik MJ (2007) Sea ice concentration from Nimbus-7 SMMR and DMSP SSM/I passive microwave data, July–December 2006. National Snow and Data Center, Digital Media, Boulder, CO, USA

    Google Scholar 

  • Meincke J (1991) WHP Cruise Summary Information of section A01E, WOCE, Bremerhaven. http://epic.awi.de/

  • Sarafanov A, Falina A, Mercier H, Lherminier P, Sokov A (2009) Recent changes in the Greenland-Scotland overflow-derived water transport from hydrographic observations in the southern Irminger Sea. Geophys Res Lett 36:L13,606

    Article  Google Scholar 

  • Schlitzer R (2000) Electronic Atlas of WOCE hydrographic and tracer data now available. Eos Trans AGU 81(5):45

    Article  Google Scholar 

  • Schlosser P, Bönisch G, Rhein M, Bayer R (1991) Reduction of deepwater formation in the Greenland Sea during the 1980s: evidence from tracer data. Science 251:1054–1056

    Article  Google Scholar 

  • Schmith T, Hansen C (2003) Fram strait ice export during the 19th and 20th centuries reconstructed from a multiyear sea ice index from Southwestern Greenland. J Climate 16:2782–2791

    Article  Google Scholar 

  • Sidorenko D, Danilov S, Wang Q, Huerta-Casas A, Schröter J (2009) On computing transports in finite-element models. Ocean Model 28:60–65. doi:10.1016/j.ocemod.2008.09.001

    Article  Google Scholar 

  • Sidorenko D, Wang Q, Danilov S, Schröter J (2011) FESOM under coordinated ocean-ice reference experiment forcing. Ocean Dyn 61:881–890. doi:10.1007/s10236-011-0406-7

    Article  Google Scholar 

  • Timmermann S, Danilov R, Schröter J, Böning C, Sidorenko D, Rollenhagen K (2009) Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model. Ocean Model 27:114–129. doi:10.1016/j.ocemod.2008.10.009

    Article  Google Scholar 

  • van Aken HM, Jong MF, Yashayaev I (2011) Decadal and multi-decadal variability of Labrador Sea Water in the north-western North Atlantic Ocean derived from tracer distributions: heat budget, ventilation, and advection. Deep-Sea Res, Part 1, Oceanogr Res Pap 58(5):505–523

    Article  Google Scholar 

  • von Storch H, Zwiers FW (2003) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang Q, Danilov S, Schröter J (2008a) Comparison of overflow simulations on different vertical grids using the finite element ocean circulation Model. Ocean Model 20:313–335. doi:10.1016/j.ocemod.2007.10.005

    Article  Google Scholar 

  • Wang Q, Danilov S, Schröter J (2008b) Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation. J Geophys Res 113. doi:10.1029/2007JC004482

    Google Scholar 

  • Wang Q, Danilov S, Hellmer HH, Schröter J (2010) Overflow dynamics and bottom water formation in the western Ross Sea: influence of tides. J Geophys Res 115(1–16). doi:10.1029/2010JC006189

    Google Scholar 

  • Wang Q, Myers PG, Hu X, Bush ABG (2012a) Flow constraints on pathways through the Canadian Arctic Archipelago. Atmos-Ocean 50(3):373–385

    Article  Google Scholar 

  • Wang X, Wang Q, Sidorenko D, Danilov S, Schröter J, Jung T (2012b) Long term ocean simulation in FESOM: evaluation and application in studying the impact of Greenland Ice Sheet melting. Ocean Dyn 62:1471–1486. doi:10.1007/s10236-012-0572-2

    Article  Google Scholar 

  • Warren BA (2007) Deep circulation of the world ocean. In: Warren BA, Wunsch C(eds)Evolution of physical oceanography, chapter 1. MIT Press, Cambridge

    Google Scholar 

  • White L, Deleersnijder E, Legat V (2008a) A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin. Ocean Model 22:26–47

    Article  Google Scholar 

  • Yashayaev I (2007) Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr 73:242–276. doi:10.1016/j.pocean.2007.04.015

    Article  Google Scholar 

  • Yashayaev I, Loder W (2009) Enhanced production of Labrador Sea Water in 2008. Geophys Res Lett 36. doi:10.1029/2008GL036162

    Google Scholar 

  • Zhang R, Delworth TL, Rosati A, Anderson WG, Dixon KW, Lee HC, Zeng F (2011) Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J Geophys Res 116:C12,024

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Scholz.

Additional information

Responsible Editor: Pierre Lermusiaux

This article is part of the Topical Collection on Multi-scale modelling of coastal, shelf and global ocean dynamics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, P., Lohmann, G., Wang, Q. et al. Evaluation of a Finite-Element Sea-Ice Ocean Model (FESOM) set-up to study the interannual to decadal variability in the deep-water formation rates. Ocean Dynamics 63, 347–370 (2013). https://doi.org/10.1007/s10236-012-0590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-012-0590-0

Keywords

Navigation