Skip to main content
Log in

Particle tracking in the vicinity of Helgoland, North Sea: a model comparison

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Station Helgoland Roads in the south-eastern North Sea (German Bight) hosts one of the richest long-term time series of marine observations. Hydrodynamic transport simulations can help understand variability in the local data brought about by intermittent changes of water masses. The objective of our study is to estimate to which extent the outcome of such transport simulations depends on the choice of a specific hydrodynamic model. Our basic experiment consists of 3,377 Lagrangian simulations in time-reversed mode initialized every 7 h within the period Feb 2002–Oct 2004. Fifty-day backward simulations were performed based on hourly current fields from four different hydrodynamic models that are all well established but differ with regard to spatial resolution, dimensionality (2D or 3D), the origin of atmospheric forcing data, treatment of boundary conditions, presence or absence of baroclinic terms, and the numerical scheme. The particle-tracking algorithm is 2D; fields from 3D models were averaged vertically. Drift simulations were evaluated quantitatively in terms of the fraction of released particles that crossed each cell of a network of receptor regions centred at the island of Helgoland. We found substantial systematic differences between drift simulations based on each of the four hydrodynamic models. Sensitivity studies with regard to spatial resolution and the effects of baroclinic processes suggest that differences in model output cannot unambiguously be assigned to certain model properties or restrictions. Therefore, multi-model simulations are needed for a proper identification of uncertainties in long-term Lagrangian drift simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Until 1st Nov 2010 officially called GKSS-Forschungszentrum Geesthacht

References

  • Brandt G, Wehrmann A, Wirtz KW (2008) Rapid invasion of Crassostrea gigas into the German Wadden Sea dominated by larval supply. J Sea Res 59:279–296

    Article  Google Scholar 

  • Burchard H, Bolding K, Villareal MR (2004) Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dynamics 54:250–265

    Article  Google Scholar 

  • Casulli V, Cattani E (1994) Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Computers Math Appl 27(4):99–112

    Article  Google Scholar 

  • Casulli V, Stelling GS (1998) Numerical simulation of 3D quasi-hydrostatic, free-surface flows. J Hydraul Eng 124:678–686

    Article  Google Scholar 

  • Casulli V, Walters RA (2000) An unstructured three-dimensional model based on the shallow water equations. Int J Numer Methods Fluids 32:331–348

    Article  Google Scholar 

  • Chrastansky A, Callies U (2009) Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Mar Pollut Bull 58:967–975

    Article  Google Scholar 

  • Chrastansky A, Callies U, Fleet DM (2009) Estimation of the impact of prevailing weather conditions on the occurrence of oil-contaminated dead birds on the German North Sea coast. Environ Pollut 157:194–198

    Article  Google Scholar 

  • Delhez EJM, Damm P, de Goede E, de Kok JM, Dumas F, Gerritsen H, Jones JE, Ozer J, Pohlmann T, Rasch PS, Skogen M, Proctor R (2004) Variability of shelf-seas hydrodynamic models: lessons from the NOMADS2 project. J Mar Syst 45:39–53

    Article  Google Scholar 

  • Dick S, Kleine E, Müller-Navarra SH, Klein H, Komo H (2001) The Operational Circulation Model of BSH (BSHcmod)-Model description and validation. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 29 (ISSN 0946–6010)

  • Dippner JW (1993) A frontal-resolving model for the German Bight. Cont Shelf Res 13:49–66

    Article  Google Scholar 

  • Gräwe U, Wolff J-O (2010) Suspended particulate matter dynamics in a particle framework. Environ Fluid Mech 10:21–39

    Article  Google Scholar 

  • Hainbucher D, Pohlmann T, Backhaus J (1987) Transport of conservative passive tracers in the North Sea: first results of a circulation and transport model. Cont Shelf Res 7:1161–1179

    Article  Google Scholar 

  • Heemink AW (1990) Stochastic modelling of dispersion in shallow water. Stochastic Hydrol Hydraul 4:161–174

    Article  Google Scholar 

  • Hervouet JM, van Haren L (1996) TELEMAC2D version 3.0 Principle Note. Chatou CEDEX. Rapport EDF HE-4394052B

  • Hickel W (1972) Kurzzeitige Veränderungen hydrographischer Faktoren und der Sestonkomponenten in driftenden Wassermassen in der Helgoländer Bucht. Helgoländer wiss. Meeresunters 23:383–392

    Article  Google Scholar 

  • Jones JE (2002) Coastal and shelf-sea modelling in the European context. Oceanogr Marine Biol: an Annual Review 40:37–141

    Google Scholar 

  • Jones JE, Davies AM (2005) An intercomparison between finite difference and finite element (TELEMAC) approaches to modelling west coast of Britain tides. Ocean Dynamics 55:178–198

    Article  Google Scholar 

  • Jones JE, Davies AM (2006) Application of a finite element model (TELEMAC) to computing the wind induced response of the Irish Sea. Cont Shelf Res 26:1519–1541

    Article  Google Scholar 

  • Kako S, Isobe A, Magome S, Hinata H, Seino S, Kojima A (2010) Establishment of numerical beach-litter hindcast/forecast models: An application to Goto Islands. Japan Mar Pollut Bull. doi:10.1016/j.marpolbul.2010.10.011

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Wollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fioriono M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, Heidelberg

    Google Scholar 

  • Liu Y, Weisberg RH, Hu C (2011) Tracking the Deepwater Horizon oil spill: A modeling perspective. Eos 92:45–52

    Article  Google Scholar 

  • Maier-Reimer E, Sündermann J (1982) On tracer methods in computational hydrodynamics. In: Abbot MB, Cunge JA (eds) Engineering Applications of Computational Hydraulics 1. Pitman, London, pp 198–217

    Google Scholar 

  • Meinke I, von Storch H, Feser F (2004) A validation of the cloud parameterization in the regional model SN-REMO. J Geophys Res 109:D13205. doi:10.1029/2004JD004520

    Article  Google Scholar 

  • Penland C (2003) A stochastic approach to nonlinear dynamics. BAMS 84:ES43–ES52

    Google Scholar 

  • Plüß A, Heyer H (2007) Morphodynamic multi-model approach for the Elbe estuary. Proceedings of the 5th IAHR Symposium on River, Coastal and Estuarine Morphodynamics (RCEM), Enschede/NL, pp 113–117

  • Plüß A, Schüttrumpf H (2004) Comparison of numerical tidal models for practical applications. Proceedings of the 29th Int. Conference of Coastal Engineering, pp 1199–1211

  • Puls W, Pohlmann T, Sündermann J (1997) Suspended particulate matter in the Southern North Sea: Application of a numerical model to extend NERC North Sea project data interpretation. Deutsche Hydrographische Zeitschrift 49:307–327

    Article  Google Scholar 

  • Ridderinkhof H, Zimmerman JTF (1992) Chaotic Stirring in a Tidal System. Science 258:1107–1111

    Article  Google Scholar 

  • Ridderinkhof H, Zimmerman JTF, Philippart ME (1990) Tidal exchange between the North Sea and Dutch Wadden Sea and mixing time scales of the tidal basins. Neth J Sea Res 25(3):331–350

    Article  Google Scholar 

  • Rixen M, Ferreira-Coelho E (2007) Operational surface drift prediction using linear and non-linear hyper-ensemble statistics on atmospheric and ocean models. J Mar Syst 65:105–121

    Article  Google Scholar 

  • Rixen M, Ferreira-Coelho E, Signell R (2008) Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on Atmospheric, ocean and wave models: Uncertainties and probability distributions. J Mar Syst 69:86–98

    Article  Google Scholar 

  • Rolinski S (1999) On the dynamics of suspended matter transport in the tidal river Elbe: Description and results of a Lagrangian model. J Geophys Res 104(C11):26043–26057

    Article  Google Scholar 

  • Rümelin W (1982) Numerical treatment of stochastic differential equations. SIAM Journ Num Anal 19:604–613

    Article  Google Scholar 

  • Schönfeld W (1995) Numerical simulation of the dispersion of artificial radionuclides in the English Channel and the North Sea. J Mar Sys 6:529–544

    Article  Google Scholar 

  • Seibert P, Frank A (2004) Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos Chem Phys 4:51–63

    Article  Google Scholar 

  • Smith JA, Damm PE, Skogen MD, Flather RA, Pätsch J (1996) An investigation into the variability of circulation and transport on the north-west European shelf using three hydrodynamic models. Deutsche Hydrographische Zeitschrift 48:325–348

    Article  Google Scholar 

  • Stommel H (1949) Horizontal diffusion due to oceanic turbulence. J Mar Res 8:199–225

    Google Scholar 

  • van der Veer HW, Ruardij P, Van den Berg AJ, Ridderinkhof H (1998) Impact of interannual variability in hydrodynamic circulation on egg and larval transport of plaice Pleuronectes platessa L. in the southern North Sea. J Sea Res 39:29–40

    Article  Google Scholar 

  • Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book JW, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: Application to surface drift prediction. Prog Oceanogr 82:149–167

    Article  Google Scholar 

  • Weisse R, Plüß A (2006) Storm-related sea level variations along the North Sea coast as simulated by a high-resolution model 1958–2002. Ocean Dynamics 56:16–25

    Article  Google Scholar 

  • Weisse R, von Storch H, Callies U, Chrastansky A, Feser F, Grabemann I, Guenther H, Pluess A, Stoye T, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteo-marine reanalyses and climate change projections: Results for Northern Europe and potentials for coastal and offshore applications. Bull Am Meteorol Soc 90(6):849–860

    Article  Google Scholar 

  • Wiltshire KH, Kraberg A, Bartsch I, Boersma M, Franke H-D, Freund J, Gebühr C, Gerdts G, Stockmann K, Wichels A (2010) Helgoland Roads, North Sea: 45 years of change. Estuaries Coasts 33:295–310

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the provision of output from the model BSHcmod by our colleagues from the Bundesamt für Seeschifffahrt und Hydrographie (BSH) in Hamburg. Levitus (NODC_WOA98) salinity data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/. For graphical display, we used the Generic Mapping Tools software (GMT) available from www.soest.hawaii.edu/gmt/. The study was conducted within the framework of the WIMO project (Scientific monitoring concepts for the German Bight), jointly funded by Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK) and Niedersächsisches Ministerium für Umwelt und Klimaschutz (MUK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Callies.

Additional information

Responsible Editor: Pierre Lermusiaux

This article is part of the Topical Collection on Maritime Rapid Environmental Assessment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callies, U., Plüß, A., Kappenberg, J. et al. Particle tracking in the vicinity of Helgoland, North Sea: a model comparison. Ocean Dynamics 61, 2121–2139 (2011). https://doi.org/10.1007/s10236-011-0474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0474-8

Keywords

Navigation