Skip to main content
Log in

Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Analytical solutions of the momentum and energy equations for tidal flow are studied. Analytical solutions are well known for prismatic channels but are less well known for converging channels. As most estuaries have a planform with converging channels, the attention in this paper is fully focused on converging tidal channels. It will be shown that the tidal range along converging channels can be described by relatively simple expressions solving the energy and momentum equations (new approaches). The semi-analytical solution of the energy equation includes quadratic (nonlinear) bottom friction. The analytical solution of the continuity and momentum equations is only possible for linearized bottom friction. The linearized analytical solution is presented for sinusoidal tidal waves with and without reflection in strongly convergent (funnel type) channels. Using these approaches, simple and powerful tools (spreadsheet models) for tidal analysis of amplified and damped tidal wave propagation in converging estuaries have been developed. The analytical solutions are compared with the results of numerical solutions and with measured data of the Western Scheldt Estuary in the Netherlands, the Hooghly Estuary in India and the Delaware Estuary in the USA. The analytical solutions show surprisingly good agreement with measured tidal ranges in these large-scale tidal systems. Convergence is found to be dominant in long and deep-converging channels resulting in an amplified tidal range, whereas bottom friction is generally dominant in shallow converging channels resulting in a damped tidal range. Reflection in closed-end channels is important in the most landward 1/3 length of the total channel length. In strongly convergent channels with a single forward propagating tidal wave, there is a phase lead of the horizontal and vertical tide close to 90o, mimicking a standing wave system (apparent standing wave).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Davies LJ (1964) A morphogenic approach to the worlds’ shorelines. Z Geomorphol 8:127–142

    Google Scholar 

  • De Kramer J (2002) Water movement in Western Scheldt Estuary (in Dutch). Dep. of Physical Geography, Report ICG 02/6. University of Utrecht, Utrecht, The Netherlands

    Google Scholar 

  • Dronkers JJ (1964) Tidal computations in rivers and coastal waters. North-Holland, New York, p 518

    Google Scholar 

  • Dronkers J (2005) Dynamics of coastal systems. World Scientific, Hackensack, p 519

    Book  Google Scholar 

  • Dyer KR (1997) Estuaries: a physical introduction. Wiley and Sons, Aberdeen, UK

    Google Scholar 

  • Friedrichs CT (1993) Hydrodynamics and morphodynamics of shallow tidal channels and intertidal effects. Ph. D. Thesis. Mass. Inst. of Technology, Woods Hole Oceanographic Inst. Woods Hole, Massachusetts, USA

  • Friedrichs CT, Aubrey DG (1994) Tidal propagation in strongly convergent channels. J Geophys Res 99(C2):3321–3336

    Article  Google Scholar 

  • Godin G (1988) Tides. Centro de Investigacion Cientificia y de Educacion Superior de Ensenada, Mexico

    Google Scholar 

  • Green G (1837) On the motion of waves in a variable canal of small depth and width. Trans Cambridge Philos Soc 6:457–462

    Google Scholar 

  • Harleman DRF (1966) Tidal dynamics in estuaries, part II: real estuaries. In: Ippen AT et al (eds) Estuary and coastline hydrodynamics. McGraw-Hill, New York

    Google Scholar 

  • Hunt JN (1964) Tidal oscillations in estuaries. Geophys J R Astron Soc 8:440–455

    Article  Google Scholar 

  • Ippen A (1966) Tidal dynamics in estuaries, part I: estuaries of rectangular cross-section. In: Ippen AT et al (eds) Estuary and coastline hydrodynamics. McGraw-Hill, New York

    Google Scholar 

  • Jay DA (1991) Greens’s law revisited: tidal long-wave propagation in channels with strong topography. J Geophys Res 96(C11):20585–20598

    Article  Google Scholar 

  • Lamb H (1963, 1966) Hydrodynamics. Cambridge Press, Cambridge

  • Lanzoni S, Seminara G (1998) On tide propagation in convergent estuaries. J Phys Res 103:30793–30812

    Google Scholar 

  • Le Blond PH (1978) On tidal propagation in shallow rivers. J Geoph Res 83:4717–4721

    Article  Google Scholar 

  • Le Floch JF (1961) Propagation de la marée dans l’estuaire de la Seine et en Seine-Maritieme. Centre de Recherches et d’études Océanographiques, Paris, France

    Google Scholar 

  • Lorentz HA (1922) Including resistance in tidal flow equations (in Dutch). De Ingenieur, The Netherlands, p 695 (in Dutch)

    Google Scholar 

  • Lorentz HA (1926) Report Commission Zuiderzee 1918–1926 (in Dutch). Den Haag, The Netherlands

    Google Scholar 

  • McDowell DM, O’Connor BA (1977) Hydraulic behaviour of estuaries. MacMillan Press, London

    Google Scholar 

  • Parker BB (1984) Frictional effects on the tidal dynamics of a shallow estuary. Doctoral Thesis. John Hopkins University, USA

  • Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions. In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 237–268

    Google Scholar 

  • Pieters T (2002) The tide in the Western Scheldt Estuary (in Dutch). Document BGW-0102. Consultancy tidal waters. Vlissingen: The Netherlands

  • Prandle D (2003a) Relationships between tidal dynamics and bathymetry in strongly convergent estuaries. J Phys Oceanogr 33:2738–2750

    Article  Google Scholar 

  • Prandle D (2003b) How tides and river flows determine estuarine bathymetries. Prog Oceanogr 61:1–26

    Article  Google Scholar 

  • Prandle D (2004) Salinity intrusion in partially mixed estuaries. Estuar Coast Shelf Sci 54:385–397

    Google Scholar 

  • Prandle D (2009) Estuaries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Prandle D, Rahman M (1980) Tidal response in estuaries. J Phys Oceanography 10:1552–1573

    Article  Google Scholar 

  • Savenije HHG (2005) Salinity and tides in alluvial estuaries. Elsevier, New York

    Google Scholar 

  • Savenije HHG, Toffolon M, Haas J, Veling EJ (2008) Analytical description of tidal dynamics in convergent estuaries. J Geophys Res 113:C10025

    Article  Google Scholar 

  • Speer PE, Aubrey DG (1985) A study of non-linear tidal propagation in shallow inlet/estuarine systems, part II: theory. Estuarine, Coastal Shelf Science 21:207–224

    Article  Google Scholar 

  • Van Rijn L (1993, 2011) Principles of fluid flow and surface waves in rivers, estuaries, seas and oceans. Aqua Publications, The Netherlands, p 750, www.aquapublications.nl

  • Verspuy C (1985) Lecture notes: long waves (in Dutch). Delft University of Technology, Delft, The Netherlands

    Google Scholar 

Download references

Acknowledgments

J. Dronkers of Deltares is gratefully acknowledged for his suggestions and checks improving the manuscript. Also, PK Tonnon of Deltares/Delft Hydraulics is gratefully acknowledged for performing and analyzing the DELFT2DH model runs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo C. van Rijn.

Additional information

Responsible Editor: Roger Proctor

Appendix I

Appendix I

The energy flux balance for depth-integrated tidal flow reads, as:

$$ d\left( {b\overline F } \right)/{\text{dx}} + b\;{D_w} = 0 $$
(1)
$$ b\;{\text{d}}\overline {\text{F}} /{\text{dx}} + \overline {\text{F}} {\text{db}}/{\text{dx}} + b\;{D_w} = 0 $$
(2)

with \( \overline F \) = energy flux per unit width per unit time and D w  = energy dissipation per unit area and time due to bottom friction, b = width of estuary channel, x = horizontal coordinate (positive in landward direction, x = 0 = mouth). The unit of each term is kgm/s3.

Since the work per unit time is defined as the product of force and velocity (=length per unit time), the instantaneous work done by the dynamic pressure force in a vertical section is:

$$ F{ =_o}\int {^h{P_d}\;\overline {\text{u}} \;{\text{dz}}} $$
(3)

The time-averaged (over the wave period) work done by the dynamic pressure force

$$ \overline F = {\left( {1/T} \right)_o}{\int {^T}_o}\int {^h\left( {{P_d}\overline u } \right)dz\;dt} $$
(4)

with, P d  = ρ g η = instantaneous pressure at height z above bed due to tidal water level variation, η = \( \widehat{\eta } \) cos(ωt), \( \overline u \) = Q r /(bh) + \( \widehat{{\overline u }} \) cos(ωt + φ) = instantaneous tidal velocity at height z (assumed to be constant over the depth and equal to depth-averaged velocity), h o = water depth to mean water surface level (h = h o + η), b = width of estuary, Q r  = river discharge, φ = phase lead of velocity maximum with respect to water level maximum.

Generally, Q r  < < Q tide. Thus:

$$ \begin{array}{*{20}{c}} {\overline F = {{\left( {1/T} \right)}_o}\int {{{^T}_o}\int {^h\left( {\rho \;g\;\eta \;\mu } \right)dz\;dt = \left( {\rho \;g\;{h_o}} \right){{\left( {1/T} \right)}_o}\int {^T\left( {\eta \;\overline u } \right)dt} } } } \hfill \\ {\overline F = \left[ {\rho \;g\;{h_o}\;{Q_r}/\left( {b{h_o}} \right)} \right] + \left[ {\left( {\rho \;g\;{h_o}\;\widehat\eta \;\overline u } \right){{\left( {1/T} \right)}_o}\int {^T} \cos \left( {\omega t} \right)\cos \left( {\omega t + \varphi } \right)dt} \right]} \hfill \\ { \overline F = \left[ {\rho \;g\;{h_o}\;{Q_r}/\left( {b{h_o}} \right)} \right] + \left[ {\left( {0.5\;\rho \;g\;{h_o}\;\overline \eta \;\hat{\bar{u}}} \right)\cos \left( \varphi \right)} \right]} \hfill \\ { \overline F = \left[ {\rho \;g\;{h_o}{Q_r}/\left( {b{h_o}} \right)} \right] + \left[ {\left( {0.25\;g\;{h_o}\;H\;\hat{\bar{u}}} \right)\cos \left( \varphi \right)} \right]} \hfill \\ \end{array} $$
(5)

Using the characteristics of a progressive wave in deep water: \( \widehat{{\overline u }} \) = (\( \widehat{\eta } \)/h o)c o = (0.5H/h o)c o; φ = 0; \( \widehat{\eta } \) = 0.5H; c o = (gho)0.5 and assuming Q r = 0, it follows that:

$$ \overline F = 0.125\;\rho \;g\;{H^2}{c_o} = \overline E \;{c_o} $$
(6)

with \( \overline E \) = 0.125 ρ g H 2 = energy of a wave per unit area, c o = wave propagation velocity.

Thus, the energy flux per unit width of a progressive wave in deep water is equal to the energy of a wave per unit length of the wave and the wave propagation velocity (similar to the expression used in short wave theory).

The instantaneous energy dissipation per unit area and time due to work done by the bed shear stress is:

$$ {D_w} = {\tau_b}\;\overline u = 0.125\;\rho \;{f^2}\;\overline u = 0.125\;\rho \;f\;{\widehat{{\overline u }}^3}\;{\cos^3}(\omega t) $$
(7)

with τb = bed shear stress = 0.125 ρ f \( \overline u \) 2, f = friction coefficient = 8 g/C 2, C = Chézy coefficient.

The time-averaged work done by the bed shear stress is:

$$ \begin{array}{*{20}c} {\overline{D} _{w} = 0.125\rho \;f\;\widehat{{\overline{u} }}^{3} {\left( {2/T} \right)}{\int\limits_o^{0.5T} {\cos ^{3} {\left( {\omega t} \right)}dt} }} \\ { = {\left( {1/{\left( {6\pi } \right)}} \right)}\rho \;f\;\widehat{{\overline{u} }}^{3} = {\left( {4/{\left( {3\pi } \right)}} \right)}\rho {\left( {g/C^{2} } \right)}\widehat{{\overline{u} }}^{3} \;} \\ \end{array} $$
(8)

Using linearized friction according to the Lorentz (1922, 1926) method, the same result is obtained.

The width and depth of the estuary channel is represented as:

$$ \begin{array}{*{20}{c}} {b{ } = { }{b_o}{ }\exp \left( { - \beta x} \right) = {b_o}\exp \left( { - x/{L_b}} \right)\;{\text{and}}\;{\text{thus}}\;db/dx = - \beta \;{b_o}\exp \left( { - bx} \right) = - \beta \;b} \hfill \\ {h = {h_o}{ }\exp \left( { - gx} \right) = {h_o}{ }\exp \left( { - x/{L_h}} \right)\;{\text{and}}\;{\text{thus}}\;dh/dx = - \gamma \;{h_o}\exp \left( { - \gamma x} \right){ } = - \gamma \;h} \hfill \\ \end{array} $$
(9)

with b o = width at entrance x = 0, β = 1/L b  = convergence coefficient, γ = 1/L h , L b  = convergence length scale for width, L h  = convergence length scale for depth. The length scale L b is of the order of 10–50 km for most estuaries. The length scale L h is much larger than L b for most estuaries as the depth generally is fairly constant or very weakly decreasing in landward direction.

Assuming Q r ≅ 0 (no river discharge), the energy flux balance expression becomes (h o = water depth to mean sea level at entrance = constant along x; \( \widehat{{\overline u }} \) = peak tidal velocity along estuary):

$$ \begin{array}{*{20}l} {{bd\overline{F} /dx + \overline{F} db/dx + b\,D_{w} = 0} \hfill} \\ {{bd{\left[ {\left. {0.25\,\rho \,g\,h\,H\,\widehat{{\overline{u} }}} \right)\cos \varphi } \right]}/dx + {\left[ {0.25\,\rho \,g\,h\,H\,\widehat{{\overline{u} }}\cos \varphi } \right]}[ - \beta \,b] + {\left[ {(1/(6\pi ))\,\rho \,b\,f\,\widehat{{\overline{u} }}^{3} } \right]} = 0} \hfill} \\ {{0.25\,b\,\rho \,g\,\cos \,\varphi \,d{\left[ {h\,H\,\widehat{{\overline{u} }}} \right]}/dx + {\left[ {0.25\,\rho \,g\,h\,H\,\widehat{{\overline{u} }}\cos \varphi } \right]}[ - \beta \,b] + {\left[ {(1/(6\pi ))\,\rho \,b\,f\,\widehat{{\overline{u} }}^{3} } \right]} = 0} \hfill} \\ {{\cos \varphi \,d{\left[ {\left. {h\,H\,\widehat{{\overline{u} }}} \right)} \right]}/dx - \beta \,h\,H\,\widehat{{\overline{u} }}\cos \varphi + {\left[ {(2/(3\pi g))f\,\widehat{{\overline{u} }}^{3} } \right]} = 0} \hfill} \\ {{\cos \,(\varphi ){\left[ {\widehat{{\overline{u} }}H\,dh/dx + \widehat{{\overline{u} }}h\,dH/dx + H\,h\,d\widehat{{\overline{u} }}/dx} \right]} - \beta \,h\,H\,\widehat{{\overline{u} }}\,\cos \varphi + {\left[ {(2/(3\pi g))f\,\widehat{{\overline{u} }}^{3} } \right]} = 0\,} \hfill} \\ \end{array} $$
(10)

Assuming, d \( \widehat{{\overline u }} \)/dx = ε \( \widehat{{\overline u }} \) and dH/dx = ε H (with ε being a small parameter), it follows that: d\( \widehat{{\overline u }} \)/dx = (\( \widehat{{\overline u }} \)/H) dH/dx, resulting in:

$$ \begin{array}{*{20}l} {{\cos \varphi {\left[ {\widehat{{\overline{u} }}H{\left( { - \gamma h} \right)} + 2\widehat{{\overline{u} }}\;h\;dH/dx} \right]} - \beta \;h\;H\;\widehat{{\overline{u} }}\cos \varphi + {\left[ {{\left( {2/{\left( {3\pi g} \right)}} \right)}f\widehat{{\overline{u} }}^{3} } \right]} = 0} \hfill} \\ {{dH/dx = 0.5{\left( {\beta + \gamma } \right)}H - \frac{{f\widehat{{\overline{u} }}^{2} }} {{3\pi \;g\;h\;\cos \varphi }}} \hfill} \\ \end{array} $$
(11)

Using \( \widehat{{\overline u }} = \left( {0.5H/{h_o}} \right)c\;\cos \varphi \) for a channel of constant depth h o (see Table 1) and thus γ = 0, it follows that:

$$ dH/dx = 0.5\beta \;H - \frac{{f\;{H^2}{c^2}\;\cos \varphi }}{{12\pi \;g\;{{\left( {{h_o}} \right)}^3}}} $$
(12)

with H = tidal range, β = 1/L b  = converging length scale (e-folding length scale), h o = depth (constant), \( \widehat{{\overline u }} \) = peak tidal velocity along channel, c = local wave speed, φ = phase difference between horizontal and vertical tide, f = 8 g/C 2 = friction coefficient, C = Chézy coefficient, x = horizontal coordinate (positive in landward direction).

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rijn, L.C. Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries. Ocean Dynamics 61, 1719–1741 (2011). https://doi.org/10.1007/s10236-011-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0453-0

Keywords

Navigation