Skip to main content
Log in

Complexes from Complexes

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the derivation and properties of differential complexes arising from a variety of problems in differential equations, with applications in continuum mechanics, relativity, and other fields. We present a systematic procedure which, starting from well-understood differential complexes such as the de Rham complex, derives new complexes and deduces the properties of the new complexes from the old. We relate the cohomology of the output complex to that of the input complexes and show that the new complex has closed ranges, and, consequently, satisfies a Hodge decomposition, Poincaré-type inequalities, well-posed Hodge–Laplacian boundary value problems, regular decomposition, and compactness properties on general Lipschitz domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amstutz, S., Van Goethem, N.: Analysis of the incompatibility operator and application in intrinsic elasticity with dislocations. SIAM Journal on Mathematical Analysis 48(1), 320–348 (2016)

    Article  MathSciNet  Google Scholar 

  2. Amstutz, S., Van Goethem, N.: Incompatibility-governed elasto-plasticity for continua with dislocations. In: Proc. R. Soc. A, vol. 473, p. 20160734. The Royal Society (2017)

  3. Amstutz, S., Van Goethem, N.: The incompatibility operator: from Riemann’s intrinsic view of geometry to a new model of elasto-plasticity. In: Topics in Applied Analysis and Optimisation, pp. 33–70. Springer (2019)

  4. Angoshtari, A., Yavari, A.: Differential complexes in continuum mechanics. Archive for Rational Mechanics and Analysis 216(1), 193–220 (2015)

    Article  MathSciNet  Google Scholar 

  5. Arnold, D.N.: Finite element exterior calculus and applications. Lectures at Peking University, http://www-users.math.umn.edu/~arnold/beijing-lectures-2015/feec-beijing-lecture5.pdf (2015)

  6. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018)

    Book  Google Scholar 

  7. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods II: The elasticity complex. In: D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides, M. Shashkov (eds.) Compatible Spatial Discretizations, IMA Vol. Math. Appl., vol. 142, pp. 47–68. Springer, Berlin (2006)

  8. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006)

    Article  MathSciNet  Google Scholar 

  9. Arnold, D.N., Falk, R.S., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Mathematics of Computation 76(260), 1699–1723 (2007)

    Article  MathSciNet  Google Scholar 

  10. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010)

    Article  MathSciNet  Google Scholar 

  11. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numerische Mathematik 92(3), 401–419 (2002)

    Article  MathSciNet  Google Scholar 

  12. Beig, R.: TT-tensors and conformally flat structures on 3-manifolds. In: Mathematics of Gravitation, Part I, pp. 109–118. Polish Academy of Sciences, Warsaw (1997)

  13. Beig, R., Chrusciel, P.T.: On linearised vacuum constraint equations on Einstein manifolds. Classical and Quantum Gravity 37(21), 215012 (2020)

  14. Bossavit, A.: Computational Electromagnetism. Academic Press (Boston) (1998)

  15. Breit, D., Cianchi, A., Diening, L.: Trace-free Korn inequalities in Orlicz spaces. SIAM Journal on Mathematical Analysis 49(4), 2496–2526 (2017)

    Article  MathSciNet  Google Scholar 

  16. Brüning, J., Lesch, M.: Hilbert complexes. Journal of Functional Analysis 108(1), 88–132 (1992)

    Article  MathSciNet  Google Scholar 

  17. Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequences. Annals of Mathematics 154(1), 97–113 (2001)

    Article  MathSciNet  Google Scholar 

  18. Chacón, L., Simakov, A.N., Zocco, A.: Steady-state properties of driven magnetic reconnection in 2d electron magnetohydrodynamics. Physical review letters 99(23), 235001 (2007)

    Article  Google Scholar 

  19. Christiansen, S.H., Hu, J., Hu, K.: Nodal finite element de Rham complexes. Numerische Mathematik 139(2), 411–446 (2018)

    Article  MathSciNet  Google Scholar 

  20. Christiansen, S.H., Hu, K., Sande, E.: Poincaré path integrals for elasticity. Journal de Mathématiques Pures et Appliquées (2019)

  21. Ciarlet, P.G.: Linear and nonlinear functional analysis with applications, vol. 130. SIAM (2013)

  22. Ciarlet, P.G., Gratie, L., Mardare, C.: Intrinsic methods in elasticity: A mathematical survey. Discrete and Continuous Dynamical Systems (2009)

  23. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Mathematische Zeitschrift 265(2), 297–320 (2010)

    Article  MathSciNet  Google Scholar 

  24. Dain, S.: Generalized Korn’s inequality and conformal Killing vectors. Calculus of variations and partial differential equations 25(4), 535–540 (2006)

    Article  MathSciNet  Google Scholar 

  25. Eastwood, M.: Variations on the de Rham complex. Notices AMS 46, 1368–1376 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Eastwood, M.: A complex from linear elasticity. In: Proceedings of the 19th Winter School” Geometry and Physics”, pp. 23–29. Circolo Matematico di Palermo (2000)

  27. Feireisl, E., Novotnỳ, A.: Singular limits in thermodynamics of viscous fluids. Springer (2009)

    Book  Google Scholar 

  28. Fuchs, M., Schirra, O.: An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers. Archiv der Mathematik 93(6), 587 (2009)

    Article  MathSciNet  Google Scholar 

  29. Geymonat, G., Krasucki, F.: Some remarks on the compatibility conditions in elasticity. Accad. Naz. Sci. XL 123, 175–182 (2005)

    MathSciNet  Google Scholar 

  30. Geymonat, G., Krasucki, F.: Beltrami’s solutions of general equilibrium equations in continuum mechanics. Comptes Rendus Mathematique 342(5), 359–363 (2006)

    Article  MathSciNet  Google Scholar 

  31. Glotko, N.V.: On the complex of Sobolev spaces associated with an abstract Hilbert complex. Siberian Mathematical Journal 44(5), 774–792 (2003)

    Article  MathSciNet  Google Scholar 

  32. Gopalakrishnan, J., Lederer, P.L., Schöberl, J.: A mass conserving mixed stress formulation for the Stokes equations. IMA Journal on Numerical Analysis 40(3), 1838–1874 (2020)

  33. Gopalakrishnan, J., Lederer, P.L., Schöberl, J.: A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry. SIAM Journal on Numerical Analysis 58(1), 706–732 (2020)

  34. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica 11(July 2003), 237–339 (2002)

    Article  MathSciNet  Google Scholar 

  35. Hiptmair, R., Li, J., Zou, J.: Universal extension for Sobolev spaces of differential forms and applications. J. Funct. Anal 263(2), 364–382 (2012)

    Article  MathSciNet  Google Scholar 

  36. Hiptmair, R., Pechstein, C.: Discrete regular decompositions of tetrahedral discrete 1-forms. In: U. Langer, D. Pauly, S.I. Repin (eds.) Maxwell’s Equations: Analysis and Numerics, chap. 7. Walter de Gruyter GmbH & Co KG (2019)

  37. Horgan, C.O.: Korn’s inequalities and their applications in continuum mechanics. SIAM review 37(4), 491–511 (1995)

    Article  MathSciNet  Google Scholar 

  38. Hörmander, L.: The analysis of linear partial differential operators III: Pseudo-differential operators, vol. 274. Springer Science & Business Media (1994)

  39. Jeong, J., Ramézani, H., Münch, I., Neff, P.: A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 89(7), 552–569 (2009)

    Article  MathSciNet  Google Scholar 

  40. Kröner, E., Anthony, K.: Dislocations and disclinations in material structures: The basic topological concepts. Annual review of materials science 5(1), 43–72 (1975)

    Article  Google Scholar 

  41. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and analysis 11(1), 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  42. Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 89(2), 107–122 (2009)

    Article  MathSciNet  Google Scholar 

  43. Park, S., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift für angewandte Mathematik und Physik 59(5), 904–917 (2008)

    Article  MathSciNet  Google Scholar 

  44. Pauly, D.: A global div-curl-lemma for mixed boundary conditions in weak Lipschitz domains and a corresponding generalized \(A_{0}^{\ast }\)-\(A_{1}\)-lemma in Hilbert spaces. Analysis 39(2), 33–58 (2019)

    Article  MathSciNet  Google Scholar 

  45. Pauly, D., Zulehner, W.: On closed and exact Grad-grad-and div-Div-complexes, corresponding compact embeddings for tensor rotations, and a related decomposition result for biharmonic problems in 3D. arXiv preprint arXiv:1609.05873v4 (2016)

  46. Pauly, D., Zulehner, W.: The divDiv-complex and applications to biharmonic equations. Applicable Analysis pp. 1–52 (2018)

  47. Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory. Mathematische Zeitschrift 187(2), 151–164 (1984)

    Article  MathSciNet  Google Scholar 

  48. Quenneville-Bélair, V.: A New Approach to Finite Element Simulations of General Relativity. Ph.D. thesis, University of Minnesota (2015)

  49. Seeger, A.: Recent advances in the theory of defects in crystals. Physica Status Solidi (B) 1(7), 669–698 (1961)

    Article  Google Scholar 

  50. Van Goethem, N.: The non-Riemannian dislocated crystal: A tribute to Ekkehart Kröner (1919-2000). Journal of Geometric Mechanics 2, 303–320 (2010)

Download references

Acknowledgements

The authors are grateful to Andreas Čap, Snorre Christiansen, Victor Reiner, Espen Sande, and Ragnar Winther for numerous valuable discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas N. Arnold.

Additional information

Communicated by Hans Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first author was supported by NSF Grant DMS-1719694 and Simons Foundation Grant 601937, DNA.

Appendix 1. Proof of Injectivity/Surjectivity Condition

Appendix 1. Proof of Injectivity/Surjectivity Condition

In this appendix we prove Lemma 2. Let \(n>0\) and \(0\le k< n\), \(1\le m\le n\) be integers. The linear map \(s=s^{k,m}\) is given by

$$\begin{aligned} s: {\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^m\mathbb {R}^n \rightarrow {\text {Alt}}^{k+1}\mathbb {R}^n\otimes {\text {Alt}}^{m-1}\mathbb {R}^n \end{aligned}$$

by

$$\begin{aligned}&s(v^{1}\wedge \cdots \wedge v^{k} \otimes v^{k+1}\wedge \cdots \wedge v^{k+m}) \nonumber \\&\quad =\sum _{l=1}^m (-1)^{l-1} v^{k+l}\wedge v^{1}\wedge \cdots \wedge v^{k}\nonumber \\&\quad \otimes v^{k+1}\wedge \cdots \wedge \widehat{v^{k+l}}\wedge \cdots \wedge v^{k+m}. \end{aligned}$$
(72)

Our goal is to show that s is injective if \(k\le m-1\) and surjective if \(k\ge m-1\).

We begin with some notation. For n and p natural numbers we write [n] for \(\{1,\ldots ,n\}\) so \([n]^p\) denotes the set of p-tuples of elements of [n]. We use standard indexing notation, so an element \(\sigma \in [n]^p\) can be written \((\sigma _1,\ldots ,\sigma _p)\). The symmetric group \(S_n\), the set of permutations of [n], may be viewed as a subset of \([n]^n\). If also \(0\le k\le p\), we define

$$\begin{aligned} X(n,p,k) = \{\sigma \in [n]^p:\sigma _1<\cdots<\sigma _k,\ \sigma _{k+1}<\cdots <\sigma _p\}, \end{aligned}$$

the set of p-tuples which are strictly increasing in the first k indices and in the remaining \(p-k\) indices. To each \(\sigma \in [n]^p\) we may associate

$$\begin{aligned} dx^\sigma := dx^{\sigma _1}\wedge \cdots \wedge dx^{\sigma _{k}}\otimes dx^{\sigma _{k+1}}\wedge \cdots \wedge dx^{\sigma _{n}}\in {\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^{p-k}\mathbb {R}^n, \end{aligned}$$

where the \(dx^i\) are the usual basis elements of the dual space of \(\mathbb {R}^n\). The \(dx^\sigma \) for \(\sigma \in X(n,p,k)\) then form the standard basis for \({\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^{p-k}\mathbb {R}^n\).

Turning to the proof of Lemma 2, we first consider the case \(m=n-k\). In this case,

$$\begin{aligned} s:{\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^{n-k}\mathbb {R}^n\rightarrow {\text {Alt}}^{k+1}\mathbb {R}^n\otimes {\text {Alt}}^{n-k-1}\mathbb {R}^n \end{aligned}$$

and we wish to show injectivity for \(n-2k-1\ge 0\) and surjectivity for \(n-2k-1\le 0\). Given a subset \(I\subset [n]\) of cardinality k, let \(\sigma \in S_n\cap X(n, n, k)\) be the unique element for which \(\{\sigma _1,\ldots ,\sigma _k\} = I\) and set \(\omega (I) = {\text {sgn}}(\sigma )dx^\sigma \in {\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^{n-k}\mathbb {R}^n\). Let W(nk) denote the subspace of \({\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^{n-k}\mathbb {R}^n\) spanned by the elements \(\omega (I)\) for all subsets I of [n] of cardinality k. It then follows from the definition of s that

$$\begin{aligned} s\omega (I) = (-1)^{k} \sum _{j\in [n]\setminus I}\omega (I\cup \{j\}). \end{aligned}$$

In particular, \(sW(n,k)\subset W(n,k+1)\). We define an inner product on each W(nk) by declaring the basis elements \(\omega (I)\) to be orthonormal. Then, the adjoint \(s^*:W(n,k+1)\rightarrow W(n,k)\) is given by

$$\begin{aligned} s^*\omega (J) = (-1)^{k} \sum _{j\in J} \omega (J\setminus \{j\}), \quad J\subset [n], \ \#J=k+1. \end{aligned}$$

The next result shows the desired injectivity and surjectivity in the case \(m=n-k\), but only for the restriction of s to a map from \(W^k\) to \(W^{k+1}\).

Lemma 12

If \(n-2k-1\ge 0\), then \(s:W(n,k)\rightarrow W(n,k+1)\) is injective. If \(n-2k-1\le 0\), then it is surjective.

Proof

Let JK be subsets of [n] of cardinality k. Then,

$$\begin{aligned} \langle s\omega (J),s\omega (K)\rangle = {\left\{ \begin{array}{ll} n-k, &{} J=K,\\ 1, &{} \#J\cap K=k-1,\\ 0,&{} \text {else}, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} \langle s^*\omega (J),s^*\omega (K)\rangle = {\left\{ \begin{array}{ll} k, &{} J=K,\\ 1, &{} \#J\cap K=k-1,\\ 0,&{} \text {else}. \end{array}\right. } \end{aligned}$$

It follows that

$$\begin{aligned} \langle s\omega (J),s\omega (K)\rangle =\langle s^*\omega (J),s^*\omega (K)\rangle + (n-2k)\langle \omega (J),\omega (K)\rangle , \end{aligned}$$

and, by bilinearity, that

$$\begin{aligned} \langle s\rho ,s\tau \rangle = \langle s^*\rho ,s^*\tau \rangle + (n-2k)\langle \rho ,\tau \rangle ,\quad \rho ,\tau \in W(n,k). \end{aligned}$$
(73)

Taking \(\tau =\rho \) and assuming that \(n-2k-1\ge 0\), we see that \(s\rho =0\) implies \(\rho =0\), so s is injective as claimed.

If we replace k by \(k+1\) in (73) and assume that \(n-2k-1\le 0\), the same argument implies that \(s^*:W(n,k+1)\rightarrow W(n,k)\) is injective, and consequently that s is surjective. \(\square \)

Now we return to general \(n\ge 1\), \(0\le k<n\), \(1\le m\le n\), and the map s acting on all of \({\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^{m}\mathbb {R}^n\). To prove surjectivity, assuming \(k\ge m-1\), we must show that s maps onto all of \({\text {Alt}}^{k+1}\mathbb {R}^n\otimes {\text {Alt}}^{m-1}\mathbb {R}^n\). For this it is enough to take an element of the form

$$\begin{aligned} \rho = v^1\wedge \cdots \wedge v^{k+1}\otimes v^{k+2}\wedge \cdots \wedge v^{k+m} \end{aligned}$$

with the \(v^i\) belonging to the dual of \(\mathbb {R}^n\), and show that \(\rho \) is in the range of s.

Let \(p=m+k\) and define a linear map from the dual space of \(\mathbb {R}^p\) to that of \(\mathbb {R}^n\) by \(T dx^i = v^i\), \(i=1,\ldots ,p\). Then, T induces a linear map

$$\begin{aligned} T_*:{\text {Alt}}^k\mathbb {R}^p\otimes {\text {Alt}}^m\mathbb {R}^p \rightarrow {\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^m\mathbb {R}^n \end{aligned}$$

given by

$$\begin{aligned}&T_*(u^1\wedge \cdots \wedge u^k\otimes u^{k+1}\wedge \cdots \wedge u^{k+m})\\&\quad = (Tu^1\wedge \cdots \wedge Tu^k\otimes Tu^{k+1}\wedge \cdots \wedge Tu^{k+m}). \end{aligned}$$

Clearly, \(T_*s = sT_*\) and, letting

$$\begin{aligned} \omega = dx^1\wedge \cdots \wedge dx^{k+1}\otimes dx^{k+2}\wedge \cdots \wedge dx^{k+m}, \end{aligned}$$

we have \(T_*\omega = \rho \). Since \(\omega \in W(n,k+1)\), the preceding lemma insures that \(\omega =s \mu \) for some \(\mu \in W(n,k)\subset {\text {Alt}}^k\mathbb {R}^p\otimes {\text {Alt}}^m\mathbb {R}^p\). Therefore,

$$\begin{aligned} \rho = T_*\omega =T_*s\mu = s(T_*\mu ). \end{aligned}$$

This completes the proof of surjectivity.

We now prove the injectivity for general n, k, and m, continuing to write \(p=m+k\). For \(\sigma \in X(n,p,k)\) let \({{\tilde{\sigma }}}\in [n]^p\) denote the tuple obtained from \(\sigma \) by taking its entries in non-decreasing order. For example, if \(\sigma =(2,3,1,2)\in X(3,4,2)\) (so increasing on its first 2 and last 2 indices), then \({{\tilde{\sigma }}} = (1,2,2,3)\). Then, we have the direct sum decomposition

$$\begin{aligned} {\text {Alt}}^k\mathbb {R}^n\otimes {\text {Alt}}^m\mathbb {R}^n = \bigoplus _{J\in [n]^p} Y(n,p,k,J), \end{aligned}$$

where

$$\begin{aligned} Y(n,p,k,J)={\text {span}}\{dx^\sigma :\sigma \in X(n,p,k),\ {{\tilde{\sigma }}}=J\}. \end{aligned}$$

Of course, there is a similar decomposition for \({\text {Alt}}^{k-1}\mathbb {R}^n\otimes {\text {Alt}}^{m+1}\mathbb {R}^n\). The two decompositions are compatible with s, in the sense that \(sY(n,p,k,J)\subset Y(n,p,k+1,J)\) for the same J. It follows that it is enough to prove that s is injective when restricted to each of the spaces Y(npkJ), \(J\in [n]^p\). The p-tuple J consists of entries which appear only once and entries which appear twice. Let l be the number of repeated entries, so that there are \(q:=p-2l\) non-repeated entries. Without loss of generality, we may assume that the non-repeated entries are \(1,\ldots ,q\) and the repeated entries \(q+1,\ldots ,q+l\), i.e.,

$$\begin{aligned} J = (1,2,\ldots ,q,q+1,q+1, q+2, q+2,\ldots ,q+l,q+l). \end{aligned}$$

The space \(S_{p-2l}\cap X(p-2l,p-2l,k-l)\) consists of permutations of \([p-2l]\) which are increasing in their first \(k-l\) and last \(m-l\) indices. If \(\rho \) belongs to this space, we define \(Q\rho \) as the p-tuple

$$\begin{aligned} Q\rho= & {} (\rho _1,\ldots ,\rho _{k-l},q+1, q+2,\ldots ,q+l,\\&\rho _{k-l+1}, \ldots , \rho _{p-2l},q+1, q+2,\ldots ,q+l). \end{aligned}$$

This defines a bijection of \(S_{p-2l}\cap X(p-2l,p-2l,k-l)\) onto \(\{\sigma \in X(n,p,k),\ {{\tilde{\sigma }}}=J\}\). Now we consider the spaces spanned by the basis functions \(dx^\sigma \) where \(\sigma \) varies in one of these two bijective sets. These spaces are precisely \(W(p-2l,k-l)\) and Y(npkJ), respectively, and the bijection just established induces an isomorphism \(F:Y(n,p,k,J)\rightarrow W(p-2l,k-l)\), given by

$$\begin{aligned} dx^{Q\rho } \mapsto dx^\rho . \end{aligned}$$

It is easy to see that \(Fs=sF\). If \(\omega \in Y(n,p,k,J)\) and \(s\omega =0\), then \(F\omega \in W(p-2l,k-l)\) and \(sF\omega =0\), so, by Lemma 12, \(F\omega =0\), so \(\omega =0\). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, D.N., Hu, K. Complexes from Complexes. Found Comput Math 21, 1739–1774 (2021). https://doi.org/10.1007/s10208-021-09498-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-021-09498-9

Keywords

Mathematics Subject Classification

Navigation