Skip to main content
Log in

Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Recent clinical studies have shown that increased serum levels of p-cresyl sulfate (PCS), a uremic toxin, are associated with the progression of chronic kidney disease (CKD) and cardiovascular outcomes. Using rat renal cortical slices, we previously reported that the rat organic anion transporter (OAT) could play a key role in the renal tubular secretion of PCS. However, no information is currently available regarding the transport of PCS via human OAT (hOAT) isoforms, hOAT1 and hOAT3.

Methods

Uptake experiments of PCS were performed using HEK293 cells, which stably express hOAT1 or hOAT3.

Results

PCS was taken up by hOAT1/HEK293 and hOAT3/HEK293 cells in a time- and concentration-dependent manner. The apparent K m for the hOAT1-mediated transport of PCS was 128 μM, whereas in hOAT3/HEK293, saturation was not observed at the highest tested PCS concentration of 5 mM. Probenecid, an OAT inhibitor, inhibited PCS transport by hOAT1 and hOAT3. The uptake of p-aminohippurate by hOAT1 and estron-3-sulfate by hOAT3 was decreased with increasing PCS concentration. The apparent 50 % inhibitory concentrations for PCS were 690 and 485 μM for hOAT1 and hOAT3, respectively.

Conclusion

PCS is a substrate for hOAT1 and hOAT3, and hOAT1 and hOAT3 appear to play a physiological role as a high-capacity PCS transporter. Since hOATs are expressed not only in the kidneys, but also in blood vessels and osteoblasts, etc., these findings are of great significance in terms of elucidating the renal clearance, tissue disposition of PCS and the mechanism of its toxicity in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lekawanvijit S, Kompa AR, Wang BH, et al. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Circ Res. 2012;111(11):1470–83.

    Article  PubMed  CAS  Google Scholar 

  2. Martinez AW, Recht NS, Hostetter TH, et al. Removal of P-cresol sulfate by hemodialysis. J Am Soc Nephrol. 2005;16(11):3430–6.

    Article  PubMed  CAS  Google Scholar 

  3. de Loor H, Bammens B, Evenepoel P, et al. Gas chromatographic-mass spectrometric analysis for measurement of p-cresol and its conjugated metabolites in uremic and normal serum. Clin Chem. 2005;51(8):1535–8.

    Article  PubMed  Google Scholar 

  4. Liabeuf S, Barreto DV, Barreto FC, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant. 2010;25(4):1183–91.

    Article  PubMed  CAS  Google Scholar 

  5. Wu IW, Hsu KH, Hsu HJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients–a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169–75.

    Article  PubMed  CAS  Google Scholar 

  6. Lin CJ, Pan CF, Liu HL, et al. The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis. 2012;225(1):173–9.

    Article  PubMed  CAS  Google Scholar 

  7. Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS ONE. 2012;7(3):e34026.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013;83(4):582–92.

    Article  PubMed  CAS  Google Scholar 

  9. Sun CY, Chang SC, Wu MS. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 2012;81(7):640–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Deguchi T, Ohtsuki S, Otagiri M, et al. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 2002;61(5):1760–8.

    Article  PubMed  CAS  Google Scholar 

  11. Deguchi T, Kusuhara H, Takadate A, et al. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004;65(1):162–74.

    Article  PubMed  CAS  Google Scholar 

  12. Enomoto A, Niwa T. Roles of organic anion transporters in the progression of chronic renal failure. Ther Apher Dial. 2007;11(Suppl 1):S27–31.

    Article  PubMed  CAS  Google Scholar 

  13. Adijiang A, Goto S, Uramoto S, et al. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant. 2008;23(6):1892–901.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto H, Tsuruoka S, Ioka T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006;69(10):1780–5.

    Article  PubMed  CAS  Google Scholar 

  15. Iwasaki Y, Yamato H, Nii-Kono T, et al. Administration of oral charcoal adsorbent (AST-120) suppresses low-turnover bone progression in uraemic rats. Nephrol Dial Transplant. 2006;21(10):2768–74.

    Article  PubMed  CAS  Google Scholar 

  16. Nii-Kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71(8):738–43.

    Article  PubMed  CAS  Google Scholar 

  17. Poesen R, Viaene L, Verbeke K, et al. Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD. Clin J Am Soc Nephrol. 2013.

  18. Miyamoto Y, Watanabe H, Noguchi T, et al. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrol Dial Transplant. 2011;26(8):2498–502.

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe H, Miyamoto Y, Otagiri M, et al. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins. J Pharm Sci. 2011;100(9):3682–95.

    Article  PubMed  CAS  Google Scholar 

  20. Mutsaers HA, Wilmer MJ, van den Heuvel LP, et al. Basolateral transport of the uraemic toxin p-cresyl sulfate: role for organic anion transporters? Nephrol Dial Transplant. 2011;26(12):4149.

    Article  PubMed  CAS  Google Scholar 

  21. Feigenbaum J, Neuberg CA. Simplified method for the preparation of aromatic sulfuric acid esters. J Am Chem Soc. 1941;63(12):3529–30.

    Article  CAS  Google Scholar 

  22. Hosoyamada M, Sekine T, Kanai Y, et al. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am J Physiol. 1999;276(1 Pt 2):F122–8.

    PubMed  CAS  Google Scholar 

  23. Cha SH, Sekine T, Fukushima JI, et al. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol. 2001;59(5):1277–86.

    PubMed  CAS  Google Scholar 

  24. Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Sakai T, Takadate A, Otagiri M. Characterization of binding site of uremic toxins on human serum albumin. Biol Pharm Bull. 1995;18(12):1755–61.

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe H, Noguchi T, Miyamoto Y, et al. Interaction between two sulfate-conjugated uremic toxins, p-cresyl sulfate and indoxyl sulfate, during binding with human serum albumin. Drug Metab Dispos. 2012;40(7):1423–8.

    Article  PubMed  CAS  Google Scholar 

  27. Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 2009;1(5):5ra11.

    Google Scholar 

  28. Mikkaichi T, Suzuki T, Onogawa T, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA. 2004;101(10):3569–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Yamaguchi H, Sugie M, Okada M, et al. Transport of estrone 3-sulfate mediated by organic anion transporter OATP4C1: estrone 3-sulfate binds to the different recognition site for digoxin in OATP4C1. Drug Metab Pharmacokinet. 2010;25(3):314–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ekaratanawong S, Anzai N, Jutabha P, et al. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci. 2004;94(3):297–304.

    Article  PubMed  CAS  Google Scholar 

  31. Jutabha P, Anzai N, Kitamura K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010;285(45):35123–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Giacomini KM, Balimane PV, Cho SK, et al. International transporter consortium commentary on clinically important transporter polymorphisms. Clin Pharmacol Ther. 2013;94(1):23–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS) [KAKENHI 23790187].

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Maruyama.

About this article

Cite this article

Watanabe, H., Sakaguchi, Y., Sugimoto, R. et al. Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol 18, 814–820 (2014). https://doi.org/10.1007/s10157-013-0902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0902-9

Keywords

Navigation