Skip to main content
Log in

Transferase activity function and system development process are critical in cattle embryo development

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Microarray gene expression experiments often consider specific developmental stages, tissue sources, or reproductive technologies. This focus hinders the understanding of the cattle embryo transcriptome. To address this, four microarray experiments encompassing three developmental stages (7, 25, 280 days), two tissue sources (embryonic or extra-embryonic), and two reproductive technologies (artificial insemination or AI and somatic cell nuclear transfer or NT) were combined using two sets of meta-analyses. The first set of meta-analyses uncovered 434 genes differentially expressed between AI and NT (regardless of stage or source) that were not detected by the individual-experiment analyses. The molecular function of transferase activity was enriched among these genes that included ECE2, SLC22A1, and a gene similar to CAMK2D. Gene POLG2 was over-expressed in AI versus NT 7-day embryos and was under-expressed in AI versus NT 25-day embryos. Gene HAND2 was over-expressed in AI versus NT extra-embryonic samples at 280 days yet under-expressed in AI versus NT embryonic samples at 7 days. The second set of meta-analyses uncovered enrichment of system, organ, and anatomical structure development among the genes differentially expressed between 7- and 25-day embryos from either reproductive technology. Genes PRDX1and SLC16A1 were over-expressed in 7- versus 25-day AI embryos and under-expressed in 7- versus 25-day NT embryos. Changes in stage were associated with high number of differentially expressed genes, followed by technology and source. Genes with transferase activity may hold a clue to the differences in efficiency between reproductive technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams HA, Southey BR, Robinson GE, Rodriguez-Zas SL (2008) Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees. BMC Genomic 9:503–517

    Article  Google Scholar 

  • Al-Shahrour F, Minguez P, Tarraga J, Montaner D, Alloza E, Vaquerizas JMM, Conde L, Blaschke C, Vera J, Dopazo J (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res (Web Server issue) 34:W472–W476

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Beyhan Z, Ross PJ, Iager AE, Kocabas AM, Cunniff K, Rosa GJ, Cibelli JB (2007) Transcriptional reprogramming of somatic cell nuclei during preimplantation development of cloned bovine embryos. Dev Biol 305:637–649

    Article  PubMed  CAS  Google Scholar 

  • Bundy JG, Iyer G, Gentile MS, Hu DE, Kettunen M, Maia AT, Thorne NP, Brenton JD, Caldas C, Brindle KM (2006) Metabolic consequences of p300 gene deletion in human colon cancer cells. Cancer Res 66:7606–7614

    Article  PubMed  CAS  Google Scholar 

  • Byun JS, Wong MM, Cui W, Idelman G, Li Q, De Siervi A, Bilke S, Haggerty CM, Player A, Wang YH, Thirman MJ, Kaberlein JJ, Petrovas C, Koup RA, Longo D, Ozato K, Gardner K (2009) Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes. PNAS 106:19286–19291

    Article  PubMed  CAS  Google Scholar 

  • Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    Article  PubMed  CAS  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Choong ML, Yangand HH, McNiece I (2007) MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 35(4):551–564

    Google Scholar 

  • Colwell AS, Longaker MT, Peter Lorenz H (2008) Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound Repair Regen 16:450–459

    Article  PubMed  Google Scholar 

  • Dai Y-S, Cserjesi P (2002) The basic helix–loop–helix factor, hand2, functions as a transcriptional activator by binding to e-boxes as a heterodimer. J Bio Chem 277:12604–12612

    Article  CAS  Google Scholar 

  • Dinnyes A, Tian XC, Yang X (2008) Epigenetic regulation of foetal development in nuclear transfer animal models. Reprod Domest Anim 43:302–309

    Article  PubMed  Google Scholar 

  • El-Bassiouni EA, Helmy MH, Abou Rawash N, El-Zoghby SM, Kamel MA, Abou Rayah AN (2005) Embryopathy in experimental diabetic gestation: assessment of oxidative stress and antioxidant defence. Br J Biomed Sci 62:71–76

    PubMed  CAS  Google Scholar 

  • Everts RE, Sommers A, Green CA, Oliveira R, Rodriguez-Zas SL, Sung LY, Du F, Evans ACO, Boland M, Fair T, Lonergan P, Renard JP, Yang X, Tian X, Lewin HA (2007a) Major differences in gene expression profiles revealed in day-25 placental tissues collected from cows carrying cloned fetuses. Plant & Animal Genomes XV Conference Abstract, San Diego, CA, http://www.intl-pag.org/pag/15/abstracts/PAG15_P05k_520.html

  • Everts RE, Sommers A, Green CA, Oliveira R, Rodriguez-Zas SL, Sung LY, Du F, Evans ACO, Boland M, Fair T, Lonergan P, Renard JP, Yang X, Tian X, Lewin HA (2007b) Major differences in gene expression profiles revealed in day-25 trophoblast but not embryonic discs collected from cattle clones. In: 2nd International Meeting on Mammalian Embryogenomics Conference Abstract, Paris, France

  • Everts RE, Chavatte-Palmer P, Razzak A, Hue I, Green CA, Oliveira R, Vignon X, Rodriguez-Zas SL, Tian XC, Yang X, Renard JP, Lewin HA (2008) Aberrant gene expression patterns in placentomes are associated with phenotypically normal and abnormal cattle cloned by somatic cell nuclear transfer. Physiol Genomics 33:65–77

    Article  PubMed  CAS  Google Scholar 

  • Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St. John JC (2007) Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 120:4025–4034

    Article  PubMed  CAS  Google Scholar 

  • Feijen A, Goumans MJ, van den Eijnden-van Raaij AJM (1994) Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development 120:3621–3637

    PubMed  CAS  Google Scholar 

  • Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, Lagarde A, Prebet T, Nezri M, Sainty D, Olschwang S, Xerri L, Chaffanet M, Mozziconacci MJ, Vey N, Birnbaum D (2009) Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 145:788–800

    Article  PubMed  CAS  Google Scholar 

  • Gibbs DA, McFadyen IR, Crawfurd MD, De Muinck Keizer EE, Headhouse-Benson CM, Wilson TM, Farrant PH (1984) First-trimester diagnosis of Lesch-Nyhan syndrome. Lancet 2:1180–1183

    Article  PubMed  CAS  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683

    PubMed  CAS  Google Scholar 

  • Hill JR, Schlafer DH, Fisher PJ, Davies CJ (2002) Abnormal expression of trophoblast major histocompatibility complex class I antigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response. Biol Reprod 67:55–63

    Article  PubMed  CAS  Google Scholar 

  • Hu MC, Jsu HJ, Guo IC, Chung B (2004) Function of Cyp11a1 in animal models. Mol Cell Endocrinol 215:95–100

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Yandell BS, Khatib H (2010) Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development. BMC Genomics 11:23

    Article  PubMed  Google Scholar 

  • Humpherys D, Eggan K, Akutsu H, Friedman A, Hochedlinger K, Yanagimachi R, Lander ES, Golub TR, Jaenisch R (2002) Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. PNAS 99:12889–12894

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  • Khatib H, Huang W, Wang X, Tran AH, Bindrim AB, Schutzkus V, Monson RL, Yandell BS (2009) Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle. J Dairy Sci 92:2238–2247

    Article  PubMed  CAS  Google Scholar 

  • Klein C, Bauersachs S, Ulbrich SE, Einspanier R, Meyer HHD, Schmidt SEM, Reichenbach H-D, Vermehren M, Sinowatz F, Blum H, Wolf E (2006) Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Bio Repro 74:253–264

    Article  CAS  Google Scholar 

  • Kues WA, Sudheer S, Herrmann D, Carnwath JW, Havlicek V, Besenfelder U, Lehrach H, Adjaye J, Niemann H (2008) Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. PNAS 105:19768–19773

    Article  PubMed  CAS  Google Scholar 

  • Laranjeira C, Pachnis V (2009) Enteric nervous system development: recent progress and future challenges. Auton Neurosci 151:61–69

    Article  PubMed  CAS  Google Scholar 

  • Lloyd RE, Romar R, Matas C, Gutierrez-Adan A, Holt WV, Coy P (2009) Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reprod 137:679–687

    Article  CAS  Google Scholar 

  • Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HA (2007) Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics 32:105–116

    Article  PubMed  CAS  Google Scholar 

  • Luftman K, Hasan N, Day P, Hardee D, Hu C (2009) Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion. Biochem Biophys Res Commun 380:65–70

    Article  PubMed  CAS  Google Scholar 

  • Marjani SL, Le Bourhis D, Vignon X, Heyman Y, Everts RE, Rodriguez-Zas SL, Lewin HA, Renard JP, Yang X, Tian XC (2009) Embryonic gene expression profiling using microarray analysis. Reprod Fertil Dev 21:22–30

    Article  PubMed  CAS  Google Scholar 

  • Mirlesse V, Jacquemard F, Daffos F, Forestier F (1996) Fetal gamma glutamyl transferase activity: clinical implication in fetal medicine. Biol Neonate 70:193–198

    Article  PubMed  CAS  Google Scholar 

  • Monticone M, Tonachini L, Tavella S, Degan P, Biticchi R, Palombi F, Puglisi R, Boitani C, Cancedda R, Castagnola P (2007) Impaired expression of genes coding for reactive oxygen species scavenging enzymes in testes of Mtfr1/Chppr-deficient mice. Reprod 134:483–492

    Article  CAS  Google Scholar 

  • Morikawa Y, Cserjesi P (2008) Cardiac neural crest expression of Hand2 regulates outflow and second heart field development. Circ Res 103:1422–1429

    Article  PubMed  CAS  Google Scholar 

  • Mourot M, Dufort I, Gravel C, Algriany O, Dieleman S, Sirard MA (2006) The influence of follicle size, fsh-enriched maturation medium, and early cleavage on bovine oocyte maternal mRNA levels. Mol Reprod Dev 73:1367–1379

    Article  PubMed  CAS  Google Scholar 

  • Obolenskaya MY, Teplyuk NM, Divi RL, Poirier MC, Filimonova NB, Zadrozna M, Pasanen MJ (2010) Human placental glutathione S-transferase activity and polycyclic aromatic hydrocarbon DNA adducts as biomarkers for environmental oxidative stress in placentas from pregnant women living in radioactivity- and chemically-polluted regions. Toxicol Lett 196:80–86

    Article  PubMed  CAS  Google Scholar 

  • Pfister-Genskow M, Myers C, Childs LA, Lacson JC, Patterson T, Betthauser JM, Goueleke PJ, Koppang RW, Lange G, Fisher P, Watt SR, Forsberg EJ, Zheng Y, Leno GH, Schultz RM, Liu B, Chetia C, Yang X, Hoeschele I, Eilertsen KJ (2005) Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol Reprod 72:546–555

    Article  PubMed  CAS  Google Scholar 

  • Prokopenko VM, Partsalis GK, Pavlova NG, Burmistrov SO, Arutyunyan AV (2002) Glutathione-dependent system of antioxidant defense in the placenta in preterm delivery. Bull Exp Biol Med 133:442–443

    Article  PubMed  CAS  Google Scholar 

  • Rausell F, Pertusa JF, Gómez-Piquer V, Hermenegildo C, García-Pérez MA, Cano A, Tarín JJ (2007) Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst stage in the mouse. Mol Reprod Dev 74:860–869

    Article  PubMed  CAS  Google Scholar 

  • Rienzo M, Nagel J, Casamassimi A, Giovane A, Dietzel S, Napoli C (2010) Mediator subunits: gene expression pattern, a novel transcript identification and nuclear localization in human endothelial progenitor cells. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2010.05.001

    PubMed  Google Scholar 

  • Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS (2008) Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 17:1–14

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Zas SL, Southey BR, Whitfield CW, Robinson GE (2006) Semiparametric approach to characterize unique gene expression trajectories across time. BMC Genomics 7:233

    Article  PubMed  Google Scholar 

  • Rodriguez-Zas SL, Ko Y, Adams HA, Southey BR (2008) Advancing the understanding of the embryo transcriptome co-regulation using meta-, functional, and gene network analysis tools. Reprod 135:213–224

    Article  CAS  Google Scholar 

  • Roth JS, Buccino G, Klein NW (1963) Inhibition of growth of chick embryo by inhibition of deoxycytidylate deaminase. Science 13:1473–1474

    Article  Google Scholar 

  • Ruberte E, Friederich V, Chambon P, Morriss-Kay G (1993) Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118:267–282

    PubMed  CAS  Google Scholar 

  • Salilew-Wondim D, Holker M, Rings F, Ulas-Cinar M, Peippo J, Tholen E, Looft C, Schellander K, Tesfaye D (2010) Bovine pre-transfer endometrium and embryo transcriptome fingerprints as 2 predictors of pregnancy success after embryo transfer. Physiol Genomics. doi:10.1152/physiolgenomics.00047.2010

    PubMed  Google Scholar 

  • Schallenberger E, Schams D, Meyer HHD (1989) Sequences of pituitary, ovarian and uterine hormone secretion during the first 5 weeks of pregnancy in dairy cattle. J Reprod Fertil 37(Suppl):277–286

    CAS  Google Scholar 

  • Seals RC, Lemaster JW, Hopkins FM, Schrick FN (1998) Effects of elevated concentrations of prostaglandin F2 alpha on pregnancy rates in progestogen supplemented cattle. Prostaglandins Other Lipid Mediat 56:377–389

    Article  PubMed  CAS  Google Scholar 

  • Smith SL, Everts RE, Tian XC, Du F, Sung LY, Rodriguez-Zas SL, Jeong BS, Renard JP, Lewin HA, Yang X (2005) Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. PNAS 102:17582–17587

    Article  PubMed  CAS  Google Scholar 

  • Smith SL, Le Bourhis D, Vignon X, Heyman Y, Lewin H, Tian XC, Renard JP, Yang X (2008) Global gene expression profiling of single, cloned bovine embryos with different developmental competencies: the good, the bad, and the ugly. Biol Reprod 77(1 Suppl):217

    Google Scholar 

  • Smith SL, Everts RE, Sung LY, Du F, Page RL, Henderson B, Rodriguez-Zas SL, Nedambale TL, Renard JP, Lewin HA, Yang X, Tian XC (2009) Gene expression profiling of single bovine embryos uncovers significant effects of in vitro maturation, fertilization and culture. Mol Reprod Dev 76:38–47

    Article  PubMed  CAS  Google Scholar 

  • Somers J, Smith C, Donnison M, Wells DN, Henderson H, McLeay L, Pfeffer PL (2006) Gene expression profiling of individual bovine nuclear transfer blastocysts. Reprod 131:1073–1084

    Article  CAS  Google Scholar 

  • Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160

    Article  PubMed  CAS  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  Google Scholar 

  • Thelie A, Papillier P, Perreau C, Uzbekova S, Hennequet-Antier C, Dalbies-Tran R (2009) Regulation of bovine oocyte-specific transcripts during in vitro oocyte maturation and after maternal-embryonic transition analyzed using a transcriptomic approach. Mol Reprod Dev 76:773–782

    Article  PubMed  CAS  Google Scholar 

  • Toledo MT, Ventrucci G, Marcondes MC (2006) Cancer during pregnancy alters the activity of rat placenta and enhances the expression of cleaved PARP, cytochrome-c and caspase 3. BMC Cancer 26:168

    Article  Google Scholar 

  • Verhaagh S, Schweifer N, Barlow DP, Zwart R (1999) Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27. Genomics 55:209–218

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa H, Hammer RE, Richardson JA, Emoto N, Williams SC, Takeda S, Clouthier DE, Yanagisawa M (2000) Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest 105:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings BA (2003) Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Bio Chem 278:32124–32131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sincere appreciation is expressed to Dr. Rudi Appels for advice and editorial suggestions.

Funding

The support of the David H. and Norraine A. Baker Graduate Fellowship in Animal Sciences (HA Adams), NCI (Grant Number: 1R03CA143975), and NIH/NIDA (Grant Number: R21DA027548 and P30DA018310) (SL Rodriguez-Zas, BR Southey) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra L. Rodriguez-Zas.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Materials Table 1

Comparison of gene expression between AI and NT from the individual-experiment analyses of 7-day embryos (d7E), 25-day embryos (d25E), 25-day extra-embryonic samples (d25X), and 280-day extra-embryonic samples (d280X) in the first set of meta-analyses. (PDF 275 kb)

Supplementary Materials Table 2

Comparison of gene expression between AI and NT from the study-level meta-analysis (study) and sample-level meta-analysis (sample) in the first set of meta-analyses. (PDF 223 kb)

Supplemental Material Table 3

Comparison of gene expression between developmental stages 7 and 25 days within AI embryos (7vs25d_AI_E), between 7 and 25 days within NT embryos (7vs25d_NT_E), between 25 and 280 days within AI extra-embryonic samples (25vs280d_AI_X), and between 25 and 280 days within NT extra-embryonic samples (25vs280d_NT_X) from the second set of meta-analyses. (PDF 307 kb)

Supplemental Material Table 4

Comparison of gene expression between embryonic and extra-embryonic AI samples at 25 days (EvsX_AI_25d) and between embryonic and extra-embryonic NT samples at 25 days (EvsX_NT_25d) from the second set of meta-analyses. (PDF 221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, H.A., Southey, B.R., Everts, R.E. et al. Transferase activity function and system development process are critical in cattle embryo development. Funct Integr Genomics 11, 139–150 (2011). https://doi.org/10.1007/s10142-010-0189-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0189-9

Keywords

Navigation