Skip to main content
Log in

Novel genes related to nodulation, secretion systems, and surface structures revealed by a genome draft of Rhizobium tropici strain PRF 81

  • Short Communication
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Rhizobium tropici is representative of the diversity of tropical rhizobia, besides comprising strains very effective in fixing N2 in symbiosis with the common bean (Phaseolus vulgaris L.). The genome of a Brazilian commercial inoculant R. tropici strain (PRF 81, =SEMIA 4088), estimated at 7.85 Mb, was analyzed through a total of 9,026 shotgun reads, assembled in 1,668 phrap contigs, and covering ≈30% of the genome. Annotation identified 2,135 coding DNA sequences (CDS), and only 57.2% have possible functions. The genome comprises a mosaic of genes, with CDS showing the highest similarities with 134 microorganisms, none of which represents more than 19% of the CDS with putative known functions. The high saprophytic capacity of PRF 81 may reside in a variety of genes related to transport, biodegradation of xenobiotics, defense, and secretion proteins, many of which were reported for the first time in the present study. Novelty was also found in nodulation (nodG, a double nodIJ system, nodT, nolF, nolG) and capsular polysaccharide genes, showing stronger similarities with Sinorhizobium (=Ensifer) than with the main symbionts of the common bean—R. etli and R. leguminosarum—suggesting that the original host of R. tropici might be another tropical legume or emphasizing the highly promiscuous nature of this rhizobial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Acosta-Durán C, Martínez-Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch Microbiol 178:161–164

    Article  PubMed  CAS  Google Scholar 

  • Aguilar OM, Riva O, Peltzer E (2004) Analysis of Rhizobium etli and its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci U S A 101:13548–13553

    Article  PubMed  CAS  Google Scholar 

  • Almeida LG, Paixão R, Souza RC, Costa GC, Barrientos JA, Santos MT, Almeida DF, Vasconcelos ATR (2004) A system for automated bacterial (genome) integrated annotation—SABIA. Bioinformatics 20:2832–2833

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. Int J Syst Bacteriol 47:996–1006

    PubMed  CAS  Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L in Brazil. Appl Env Microbiol 68:4025–4034

    Article  CAS  Google Scholar 

  • Cárdenas L, Domínguez J, Santana O, Quinto C (1996) The role of the nodI and nodJ genes in the transport of Nod metabolites in Rhizobium etli. Gene 173:183–187

    Article  PubMed  Google Scholar 

  • Dickstein R, Bisseling T, Reinhold VN, Ausubel FM (1988) Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev 2:677–687

    Article  PubMed  CAS  Google Scholar 

  • Folch-Mallol JL, Marroqui S, Sousa C, Manyani H, López-Lara IM, van der Drift KM, Haverkamp J, Quinto C, Gil-Serrano A, Thomas-Oates J, Spaink HP, Megías M (1996) Characterization of Rhizobium tropici CIAT899 nodulation factors: the role of nodH and nodPQ genes in their sulfation. Mol Plant-Microb Interact 9:151–163

    CAS  Google Scholar 

  • Forsberg LS, Reuhs BL (1997) Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp. J Bacteriol 179:5366–5371

    PubMed  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  • Geniaux E, Laguerre G, Amarger N (1993) Comparison of geographically distant population of Rhizobium isolated from root nodules of Phaseolus vulgaris. Mol Ecol 2:295–302

    Article  Google Scholar 

  • Gil-Serrano A, Sanchez del Junco A, Tejero-Mateo P, Megias M, Caviedes MA (1990) Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var phaseoli CIAT 899. Carbohydr Res 204:103–107

    Article  PubMed  CAS  Google Scholar 

  • Gil-Serrano A, Franco G, González-Jiménez I, Tejero P, Molina J, Dobado JA, Romero MJ, Megías M (1993) The structure and molecular mechanics calculations of the cyclic-(1-2)-β-d-glucan secreted by Rhizobium tropici CIAT899. J Mol Struct 301:211–226

    Article  CAS  Google Scholar 

  • Gil-Serrano AM, González-Jiménez I, Tejero-Mateo P, Megias M, Romero-Vazquez MJ (1994) Analysis of the lipid moiety of lipopolysaccharide from Rhizobium tropici CIAT899: identification of 29-hydroxytriacontanoic acid. J Bacteriol 176:2454–2457

    PubMed  CAS  Google Scholar 

  • Godoy LP, Vasconcelos ATR, Chueire LMO, Souza RC, Nicolás MF, Barcellos FG, Hungria M (2008) Genomic panorama of Bradyrhizobium japonicum CPAC 15, a commercial inoculant strain largely established in Brazilian soils and belonging to the same serogroup as USDA 123. Soil Biol Biochem 40:2743–2753

    Article  CAS  Google Scholar 

  • González V, Santamaria RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839

    Article  PubMed  Google Scholar 

  • Graham PH, Draeger KJ, Ferrey ML, Conroy MJ, Hammer BE, Martínez E, Aarons SR, Quinto C (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    CAS  Google Scholar 

  • Grange L, Hungria M (2004) Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biol Biochem 36:1389–1398

    Article  CAS  Google Scholar 

  • Grange L, Hungria M, Graham PH, Martínez-Romero E (2007) New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus vulgaris) in Brazil. Soil Biol Biochem 39:867–876

    Article  CAS  Google Scholar 

  • Hungria M, Andrade DS, Chueire LMO, Probanza A, Guitierrez-Manero FJ, Megías M (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L) rhizobia from Brazil. Soil Biol Biochem 21:1515–1528

    Article  Google Scholar 

  • Hungria M, Campo RJ, Mendes IC (2003) Benefits of inoculation of common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88–93

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:29–34

    Article  Google Scholar 

  • Kereszt A, Kiss E, Reuhs BL, Carlson RW, Kondorosi A, Putnoky P (1998) Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase. J Bacteriol 80:5426–5431

    Google Scholar 

  • Le Quéré AJ, Deakin WJ, Schmeisser C, Carlson RW, Streit WR, Broughton WJ, Forsberg LS (2006) Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp NGR234: deletion of the rkpMNO locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid. Biol Chem 281:28981–28992

    Article  CAS  Google Scholar 

  • Lloret L, Martínez-Romero E (2005) Evolución y filogenia de Rhizobium. Rev Latinoam Microbiol 47:43–60

    PubMed  Google Scholar 

  • López-Lara IM, Geiger O (2001) The nodulation protein NodG shows the enzymatic activity of an 3-oxoacyl-acyl carrier protein reductase. Mol Plant-Microb Interact 14:349–357

    Article  Google Scholar 

  • Manyani H, Sousa C, Soria Díaz ME, Gil-Serrano A, Megías M (2001) Regulation of nod factor sulphation genes in Rhizobium tropici CIAT899. Can J Microbiol 47:574–579

    Article  PubMed  CAS  Google Scholar 

  • Martínez E, Pardo MA, Palacios R, Cevallos MA (1985) Reiteration of nitrogen fixation gene sequences and specificity of Rhizobium in nodulation and nitrogen fixation in Phaseolus vulgaris. J Gen Microbiol 131:1779–1786

    Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L beans and Leucaena sp trees. Int J Syst Bacteriol 41:417–426

    PubMed  Google Scholar 

  • Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332

    Article  PubMed  CAS  Google Scholar 

  • Mercante FM, Cunha CO, Straliotto R, Ribeiro-Juinior WQ, Vanderleyden J, Franco AA (1998) Leucaena leucocephala as a trap-host for Rhizobium tropici strain from the Brazilian Cerrado region. Rev Microbiol 29:49–58

    Google Scholar 

  • Michiels J, Dombrecht B, Vermeiren N, Xi C, Luyten E, Vanderleyden J (1998) Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol Ecol 26:193–205

    Article  CAS  Google Scholar 

  • Mostasso L, Mostasso FL, Dias BG, Vargas MAT, Hungria M (2002) Selection of bean (Phaseolus vulgaris L) rhizobial strains for the Brazilian Cerrados. Field Crops Res 73:261–272

    Article  Google Scholar 

  • Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Carmen L, Sanjuan J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microb Interact 15:225–232

    Article  CAS  Google Scholar 

  • Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ, Gil-Serrano AM, Rodríguez-Carvajal MA, Moreno J, Ruiz-Sainz JE (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant-Microb Interact 19:43–52

    Article  CAS  Google Scholar 

  • Pinto FGS, Hungria M, Mercante FM (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L). Soil Biol Biochem 39:1851–1864

    Article  CAS  Google Scholar 

  • Quinto C, Flores M, Leemans J, Cevallos MA, Pardo MA, Azpiroz R, Girard ML, Calva E, Palacios R (1985) Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci U S A 82:1170–1174

    Article  PubMed  CAS  Google Scholar 

  • Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN (1994) Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 176:1997–2002

    PubMed  CAS  Google Scholar 

  • Riley M (1993) Functions of the gene products of Escherichia coli. Microbiol Rev 57:862–952

    PubMed  CAS  Google Scholar 

  • Rosteck PR Jr, Reynolds PA, Hershberger CL (1991) Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102:27–32

    Article  PubMed  CAS  Google Scholar 

  • Segovia L, Young JPW, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp nov. Int J Syst Bacteriol 43:374–377

    Article  PubMed  CAS  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

    Article  PubMed  CAS  Google Scholar 

  • Sousa C, Folch JL, Boloix P, Megías M, Nava N, Quinto C (1993) A Rhizobium tropici DNA region carrying the amino-terminal half of a nodD gene and a nod-box-like sequence confers host-range extension. Mol Microbiol 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Stanfield SW, Ielpi L, O’Brochta D, Helinski DR, Ditta GS (1988) The ndvA gene product of Rhizobium meliloti is required for beta-(1→2)glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol 170:3523–3530

    PubMed  CAS  Google Scholar 

  • Suzuki K, Iwata K, Yoshida K (2001) Genome analysis of Agrobacterium tumefaciens: construction of physical maps for linear and circular chromosomal DNAs, determination of copy number ratio and mapping of chromosomal virulence genes. DNA Res 8:141–152

    Article  PubMed  CAS  Google Scholar 

  • Tatusov R, Galperin M, Natale D, Koonin E (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  PubMed  CAS  Google Scholar 

  • Vargas C, Martinez LJ, Megias M, Quinto C (1990) Identification and cloning of nodulation genes and host specificity determinants of the broad host-range Rhizobium leguminosarum biovar phaseoli strain CIAT899. Mol Microbiol 4:1899–1910

    Article  PubMed  CAS  Google Scholar 

  • Viprey V, Rosenthal A, Broughton WK, Perret X (2000) Genetic snapshots of the Rhizobium species NGR234 genome. Gen Biol 1:1–17

    Article  Google Scholar 

  • Waelkens F, Voets T, Vlassak K, Vanderleyden J, van Rhijn P (1995) The nodS gene of Rhizobium tropici strain CIAT899 is necessary for nodulation on Phaseolus vulgaris and on Leucaena leucocephala. Mol Plant-Microb Interact 8:147–154

    CAS  Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhil J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Reagents were financed by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, project # 505499/2004-5). The authors thank Daisy R. Binde and Jesiane S.S. Batista (fellows from CNPq # 505946/2004-1) for the laboratory assistance in the sequencing project, and Dr. Fabio O. Pedrosa and Dr. Emanuel M. Souza for scientific advice. F.G.S. Pinto received a Ph.D. fellow from CNPq. L.M.O. Chueire acknowledges a technology fellowship and A.T.R. Vasconcelos and M. Hungria research fellowships from CNPq. F.G. Barcellos is a pos-doc fellow from CAPES. M. Megías acknowledges MEC for the project # AGL2006-13758-C05-01-AGR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Hungria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, F.G.S., Chueire, L.M.O., Vasconcelos, A.T.R. et al. Novel genes related to nodulation, secretion systems, and surface structures revealed by a genome draft of Rhizobium tropici strain PRF 81. Funct Integr Genomics 9, 263–270 (2009). https://doi.org/10.1007/s10142-009-0109-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-009-0109-z

Keywords

Navigation