Skip to main content
Log in

Genomic Selection Using BayesCπ and GBLUP for Resistance Against Edwardsiella tarda in Japanese Flounder (Paralichthys olivaceus)

  • Short Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson’s correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM (2017) Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics 18(1):121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotypephase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  • Chamberlain AJ, McPartlan HC, Goddard ME (2007) The number of loci that affect milk production traits in dairy cattle. Genetics 177(2):1117–1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Q, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J (2014) Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 46:253–260

    Article  PubMed  CAS  Google Scholar 

  • Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omoré A, Pomiès V, Riou V, Suryana E, Bouvet J (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128(3):397–410

    Article  PubMed  Google Scholar 

  • de Campos CF, Lopes MS, e Silva FF, Veroneze R, Knol EF, Lopes PS, Guimarães SE (2015) Genomic selection for boar taint compounds and carcass traits in a commercial pig population. Livest Sci 174:10–17

    Article  Google Scholar 

  • Dong L, Xiao S, Chen J, Wan L, Wang Z (2016a) Genomic selection using extreme phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea). Mar Biotechnol 18(5):575–583

    Article  CAS  Google Scholar 

  • Dong L, Xiao S, Wang Q, Wang Z (2016b) Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). BMC Genomics 17(1):460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forni S, Aguilar I, Misztal I (2011) Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol 43(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuji K, Kobayashi K, Hasegawa O, Coimbra MRM, Sakamoto T, Okamoto N (2006) Identification of a single major genetic locus controlling the resistance to lymphocystis disease in Japanese flounder (Paralichthys olivaceus). Aquaculture 254(1):203–210

    Article  CAS  Google Scholar 

  • Fuji K, Hasegawa O, Honda K, Kumasaka K, Sakamoto T, Okamoto N (2007) Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 272(1):291–295

    Article  Google Scholar 

  • Gao H, Christensen OF, Madsen P, Nielsen US, Zhang Y, Lund MS, Su G (2012) Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Genet Sel Evol 44(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geng X, Liu SK, Yuan ZH, Jiang YL, Zhi DG, Liu ZJ (2017) A genome-wide association study reveals that genes with functions for bone development are associated with body conformation in catfish. Mar Biotechnol 19(6):570–578

    Article  CAS  Google Scholar 

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinf 12(1):186

    Article  Google Scholar 

  • Hayes BJ, Visscher PM, Goddard ME (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91(01):47–60

    Article  CAS  Google Scholar 

  • Knol EF, Nielsen B, Knap PW (2016) Genomic selection in commercial pig breeding. Anim Front 6(1):15–22

    Article  Google Scholar 

  • Legarra A, Robert-Granié C, Manfredi E, Elsen JM (2008) Performance of genomic selection in mice. Genetics 180:611–618

    Article  PubMed  PubMed Central  Google Scholar 

  • Legarra A, Calenge F, Mariani P, Velge P, Beaumont C (2011) Use of a reduced set of single nucleotide polymorphisms for genetic evaluation of resistance to Salmonella carrier state in laying hens. Poult Sci 90(4):731–736

    Article  PubMed  CAS  Google Scholar 

  • Liu F (2015) Genetic analysis and a preliminary genomic selection research of economic traits in Cynoglossus semilaevis. Ph. D. Dissertation. Shanghai: Shanghai Ocean University. (In Chinese)

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128(7):1297–1306

    Article  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen TTT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ (2016) Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 99(4):2849–2862

    Article  PubMed  CAS  Google Scholar 

  • Oliveira HR, Silva FF, Brito LF, Guarini AR, Jamrozik J, Schenkel FS (2018) Comparing deregression methods for genomic prediction of test-day traits in dairy cattle. J Anim Breed Genet 135(2):97–106

    Article  PubMed  CAS  Google Scholar 

  • Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao C, Niu Y, Rastas P, Liu Y, Xie Z, Li H, Wang L, Jiang Y, Tai S, Tian Y, Sakamoto T, Chen S (2015) Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res 22(2):161–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao C, Bao B, Xie Z, Chen X, Li B, Jia X, Yao Q, Orti G, Li W, Li X, Hamre K, Xu J, Wang L, Chen F, Tian Y, Schreiber AM, Wang N, Wei F, Zhang J, Dong Z, Gao L, Gai J, Sakamoto T, Mo S, Chen W, Shi Q, Li H, Xiu Y, Li Y, Xu W, Shi Z, Zhang G, Power DM, Wang Q, Schartl M, Chen S (2017) The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49(1):119–124

    Article  PubMed  CAS  Google Scholar 

  • Shumbusho F, Raoul J, Astruc JM, Palhiere I, Lemarié S, Fugeray-Scarbel A, Elsen M (2016) Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program. Animal 10(6):1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Song W, Li Y, Zhao Y, Liu Y, Niu Y, Pang R, Miao G, Liao X, Shao C, Gao F, Chen S (2012a) Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 7:e52097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song W, Pang R, Niu Y, Gao F, Zhao Y, Zhang J, Sun J, Shao C, Liao X, Wang L, Tian Y, Chen S (2012b) Construction of high-density genetic linkage maps and mapping of growth-related quantitative trail loci in the Japanese flounder (Paralichthys olivaceus). PLoS One 7(11):e50404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai HY, Hamilton A, Tinch AE, Guy DR, Gharbi K, Stear MJ, Matika O, Bishop SC, Houston RD (2015) Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array. BMC Genomics 16:969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallejo RL, Leeds TD, Fragomeni BO, Gao G, Hernandez AG, Misztal I, Welch TJ, Wiens GD, Palti Y (2016) Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in rainbow trout: insights on genotyping methods and genomic prediction models. Front Genet 7:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423

    Article  PubMed  CAS  Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92(1):16–24

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Fan C, Liu Y, Zhang Y, Liu S, Sun D, Deng H, Xu Y, Tian Y, Liao X, Xie M, Li W, Chen S (2014) A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis. Mar Biotechnol 16(5):513–521

    Article  CAS  Google Scholar 

  • Wang L, Liu P, Huang S, Ye B, Chua E, Wan Z, Yue G (2017) Genome-wide association study identifies loci associated with resistance to viral nervous necrosis disease in Asian seabass. Mar Biotechnol 16(3):255–265

    Article  CAS  Google Scholar 

  • Weigel KA, Pralle RS, Adams H, Cho K, Do C, White HM (2017) Prediction of whole-genome risk for selection and management of hyperketonemia in Holstein dairy cattle. J Anim Breed Genet 134(3):275–285

    Article  PubMed  CAS  Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75(02):249–252

    Article  PubMed  CAS  Google Scholar 

  • Wolc A, Stricker C, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, Habier D, Fernando R, Garrick D, Lamont SJ, Dekkers JCM (2011) Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genet Sel Evol 43(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue GH (2014) Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish 15(3):376–396

    Article  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Li YP, Li YJ, Yu JC, Liao H, Wang SY, Lv J, Liang J, Huang XT, Bao ZM (2017) A genome-wide association study identifies the genomic region associated with shell color in yesso scallop, Patinopecten yessoensis. Mar Biotechnol 19(3):301–309

    Article  CAS  Google Scholar 

  • Zheng WW, Chen SL, Li ZY, Wei ZF, Gao J, Li YZ, Liu Y, Tian YS, Liu ST, Sun DQ, Yang YM, Wang L (2016) Analyzing of heritability and breeding value of disease resistance for Edwardsiella tarda in Japanese flounder (Paralichthys olivaceus). J Agric Biotechnol 24(8):1181–1189 (In Chinese)

    CAS  Google Scholar 

  • Zhong XX, Wang XZ, Zhou T, Jin YL, Tan SX, Jiang C, Geng X, Li N, Shi HT, Zeng QF (2017) Genome-wide association study reveals multiple novel QTL associated with low oxygen tolerance in hybrid catfish. Mar Biotechnol 19(4):379–390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Prof. Xijiang Yu and Prof. Hengde Li for their assistance with the improvement of our genomic selection algorithm.

Funding

This study was supported by grants from the following: (1) the Central Public-interest Scientific Institution Basal Research Fund, CAFS (No. 2016HY-ZD02); (2) the National Natural Science Foundation of China (31461163005, 31570078); (3) the Taishan Scholar Climbing Program of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Contributions

SC initiated, managed, and conceived the research; YL, SL, and FL analyzed the data; QZ, CS, and NW discovered SNPs; YL, YY, YZ, HS, and WZ prepare the sample; YL and SL wrote the paper; and SC revised the paper . All the authors reviewed the manuscript.

Corresponding author

Correspondence to Songlin Chen.

Ethics declarations

Ethics Statement

The collection and handling of the animals in the study was approved by the Animal Care and Use Committee at the Chinese Academy of Fishery Sciences, and all experimental animal protocols were carried out in accordance with the guidelines for the care and use of laboratory animals at the Chinese Academy of Fishery Sciences.

Competing Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lu, S., Liu, F. et al. Genomic Selection Using BayesCπ and GBLUP for Resistance Against Edwardsiella tarda in Japanese Flounder (Paralichthys olivaceus). Mar Biotechnol 20, 559–565 (2018). https://doi.org/10.1007/s10126-018-9839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9839-z

Keywords

Navigation