Skip to main content

Advertisement

Log in

Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ameye L, Hernann R, Dubois P, Flammang P (2000) Ultrastructure of the echinoderm cuticle after fast-freezing /freeze substitution and conventional chemical fixations. Microsc Res Tech 48:385–393

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Cavalcante C, Zito F, Yokota Y, Matranga V (2010) Phylogenetic analysis and homology modelling of Paracentrotus lividus nectin. Mol Divers 14:653–665

    Article  CAS  PubMed  Google Scholar 

  • Del Campo A, Schwotzer W, Gorb SN, Aldred N, Santos R, Flammang P (2013) Biological and biomimetic adhesives: challenges and opportunities—preface. In: Santos R, Aldred N, Gorb S, Flammang P (eds) Biological and biomimetic adhesives: challenges and opportunities. Springer, Berlin, pp 7–17

  • Flammang P, Santos R, Haesaerts D (2005) Echinoderm adhesive secretions: from experimental characterization to biotechnological applications. In: Matranga V (ed) Progress in molecular and subcellular biology, marine molecular biotechnology. Echinodermata. Springer-Verlag, Berlin, pp 199–218

    Google Scholar 

  • Flammang P, Lambert A, Bailly P, Hennebert E (2009) Polyphosphoprotein containing marine adhesives. J Adhes 85:447–464

    Article  CAS  Google Scholar 

  • Hennebert E, Wattiez R, Flammang P (2011) Characterisation of the carbohydrate fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens. Mar Biotechnol 13:484–495

    Article  CAS  PubMed  Google Scholar 

  • Hennebert E, Wattiez R, Demeuldre M, Ladurner P, Hwang DS, Waitee JH, Flammang P (2014) Sea star tenacity mediated by a protein that fragments, then aggregates. PNAS 111(17):6317–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennebert E, Leroy B, Wattiez R, Ladurner P (2015) An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion. J Proteomics 128:83–91

    Article  CAS  PubMed  Google Scholar 

  • Kamino K, Nakano M, Kanai S (2012) Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J 279:1750–1760

    Article  CAS  PubMed  Google Scholar 

  • Matranga V, Di Ferro D, Zito F, Cervello M, Nakano E (1992) A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Roux’s Arch Dev Biol 201:173–178

    Article  CAS  Google Scholar 

  • Mistry N, Harrington W, Lasda E, Wagner EJ, Garcia-Blanco MA (2003) Of urchins and men: evolution of an alternative splicing unit in fibroblast growth factor receptor genes. RNA 9:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa K, Nishida A, Yamamoto H, Waite JH (2004) A glycosylated byssal precursor protein from the green mussel Perna viridis with modified Dopa side-chains. Biofouling 20:101–115

    Article  CAS  PubMed  Google Scholar 

  • Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012, 640923

    Article  Google Scholar 

  • Santos R, Flammang P (2006) Morphology and tenacity of the tube foot disc of three common European sea urchin species: a comparative study. Biofouling 22:187–200

    Article  PubMed  Google Scholar 

  • Santos R, Flammang P (2007) Intra- and interspecific variation of attachment strength in sea urchins. Mar Ecol Prog Ser 332:129–142

    Article  Google Scholar 

  • Santos R, Flammang P (2008) Estimation of the attachment strength of the shingle sea urchin, Colobocentrotus atratus, and comparison with three sympatric echinoids. Mar Biol 154:37–49

    Article  Google Scholar 

  • Santos R, Gorb S, Jamar V, Flammang P (2005) Adhesion of echinoderm tube feet to rough surfaces. J Exp Biol 208:2555–2567

    Article  PubMed  Google Scholar 

  • Santos R, da Costa G, Franco C, Gomes-Alves P, Flammang P, Coelho AV (2009) First insights into the biochemistry of tube foot adhesive from the sea urchin Paracentrotus lividus (Echinoidea, Echinodermata). Mar Biotechnol 11:686–698

    Article  CAS  PubMed  Google Scholar 

  • Santos R, Barreto A, Franco C, Coelho AV (2013) Mapping sea urchins tube feet proteome—a unique hydraulic mechano-sensory adhesive organ. J Proteomics 79:100–113

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Smith AM (2006) The biochemistry and mechanics of gastropod adhesive gels. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, Berlin

    Chapter  Google Scholar 

  • Stanley MS, Callow ME, Callow JA (1999) Monoclonal antibodies to adhesive cell coat glycoproteins secreted by zoospores of the green alga Enteromorpha. Planta 210:61–71

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ, Wang CS, Shao H (2011) Complex coacervates as a foundation for synthetic underwater adhesives. Adv Colloid Interface Sci 167:85–93

    Article  CAS  PubMed  Google Scholar 

  • Taylor CM, Wang W (2007) Histidinoalanine: a crosslinking amino acid. Tetrahedron 63:9033–9047

    Article  CAS  Google Scholar 

  • Waite JH, Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893

    Article  CAS  PubMed  Google Scholar 

  • Warner SC, Waite JH (1999) Expression of multiple forms of an adhesive plaque protein in an individual mussel, Mytilus edulis. Mar Biol 134:729–734

    Article  CAS  Google Scholar 

  • Xiang M, Bédard P-A, Wessel G, Filion M, Brandhorst BP, Klein WH (1988) Tandem duplication and divergence of a sea urchin protein belonging to the Troponin C superfamily. J Biol Chem 263:17173–17180

    CAS  PubMed  Google Scholar 

  • Yu J, Wei W, Danner E, Ashley RK, Israelachvili JN, Waite JH (2011) Mussel protein adhesion depends on thiol-mediated redox modulation. Nat Chem Biol 7:588–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Sun C, Stewart RJ, Waite JH (2005) Cement proteins of the tube-building polychaete Phragmatopoma californica. J Biol Chem 280:42938–42944

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Sagert J, Hwang DS, Waite JH (2009) Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J Biol Chem 284:23344–23352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zito F, Burke RD, Matranga V (2010) Pl-nectin, a discoidin family member, is a ligand for betaC integrins in the sea urchin embryo. Matrix Biol 29:341–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia through a postdoctoral grant attributed to Duarte Toubarro (SFRH/BPD/ 77483/2011), a project research grant attributed to Analuce Gouveia, a postdoctoral grant and a research contract attributed to Gonçalo da Costa (SFRH/BPD/73779/2010, IF/00359/2014), a research contract by the Ciência 2008 program, and a postdoctoral grant attributed to Romana Santos (SFRH/BPD/109081/2015), and project grants attributed (PTDC/MAR/117360/2010), PEst-OE/QUI/UI0612/2013, UID/MULTI/00612/2013). The authors wish to acknowledge Dr. Fátima Gil and Miguel Cadete for sea urchin maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romana Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 17 kb)

Supplementary Table 2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toubarro, D., Gouveia, A., Ribeiro, R.M. et al. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus . Mar Biotechnol 18, 372–383 (2016). https://doi.org/10.1007/s10126-016-9698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-016-9698-4

Keywords

Navigation