Skip to main content
Log in

On the choice of the best imputation methods for missing values considering three groups of classification methods

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In real-life data, information is frequently lost in data mining, caused by the presence of missing values in attributes. Several schemes have been studied to overcome the drawbacks produced by missing values in data mining tasks; one of the most well known is based on preprocessing, formerly known as imputation. In this work, we focus on a classification task with twenty-three classification methods and fourteen different imputation approaches to missing values treatment that are presented and analyzed. The analysis involves a group-based approach, in which we distinguish between three different categories of classification methods. Each category behaves differently, and the evidence obtained shows that the use of determined missing values imputation methods could improve the accuracy obtained for these methods. In this study, the convenience of using imputation methods for preprocessing data sets with missing values is stated. The analysis suggests that the use of particular imputation methods conditioned to the groups is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acuna E, Rodriguez C (2004) Classification, clustering and data mining applications. Springer, Berlin, pp 639–648

    Book  Google Scholar 

  2. Alcalá-fdez J, Sánchez L, García S, Jesus MJD, Ventura S, Garrell JM, Otero J, Bacardit J, Rivas VM, Fernández JC, Herrera F (2009) Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput 13(3): 307–318

    Article  Google Scholar 

  3. Asuncion A, Newman D (2007) UCI machine learning repository. http://archive.ics.uci.edu/ml/

  4. Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning. Artif Intell Rev 11: 11–73

    Article  Google Scholar 

  5. Barnard J, Meng X (1999) Applications of multiple imputation in medical studies: From aids to nhanes. Stat Methods Med Res 8(1): 17–36

    Article  Google Scholar 

  6. Batista G, Monard M (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5): 519–533

    Article  Google Scholar 

  7. Bezdek J, Kuncheva L (2001) Nearest prototype classifier designs: an experimental study. Int J Intell Syst 16(12): 1445–1473

    Article  MATH  Google Scholar 

  8. Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 11: 321–355

    MathSciNet  Google Scholar 

  9. Clark P, Niblett T (1989) The cn2 induction algorithm. Mach Learn J 3(4): 261–283

    Google Scholar 

  10. Cohen W (1995) Fast effective rule induction. In: Machine learning: proceedings of the twelfth international conference, pp 1–10

  11. Cohen W, Singer Y (1999) A simple and fast and and effective rule learner. In: Proceedings of the sixteenth national conference on artificial intelligence, pp 335–342

  12. Cover TM, Thomas JA (1991) Elements of information theory, 2nd edn. Wiley, NY

    Book  MATH  Google Scholar 

  13. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7: 1–30

    MathSciNet  MATH  Google Scholar 

  14. Ding Y, Simonoff JS (2010) An investigation of missing data methods for classification trees applied to binary response data. J Mach Learn Res 11: 131–170

    MathSciNet  Google Scholar 

  15. Domingos P, Pazzani M (1997) On the optimality of the simple bayesian classifier under zero-one loss. Mach Learn 29: 103–137

    Article  MATH  Google Scholar 

  16. Ennett CM, Frize M, Walker CR (2001) Influence of missing values on artificial neural network performance. Stud Health Technol Inform 84: 449–453

    Google Scholar 

  17. Fan R-E, Chen P-H, Lin C-J (2005) Working set selection using second order information for training support vector machines. J Mach Learn Res 6: 1889–1918

    MathSciNet  MATH  Google Scholar 

  18. Farhangfar A, Kurgan LA, Pedrycz W (2007) A novel framework for imputation of missing values in databases. IEEE Trans Syst Man Cybern Part A 37(5): 692–709

    Article  Google Scholar 

  19. Farhangfar A, Kurgan L, Dy J (2008) Impact of imputation of missing values on classification error for discrete data. Pattern Recognit 41(12): 3692–3705

    Article  MATH  Google Scholar 

  20. Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of 13th international joint conference on uncertainly in artificial intelligence (IJCAI93), pp. 1022–1029

  21. Feng H, Guoshun C, Cheng Y, Yang B, Chen Y (2005) A svm regression based approach to filling in missing values. In: Khosla R, Howlett RJ, Jain LC (eds) ‘KES (3)’, vol 3683 of lecture notes in computer science. Springer, Berlin, pp 581–587

  22. Frank E, Witten I (1998) Generating accurate rule sets without global optimization. In: Proceedings of the fifteenth international conference on machine learning, pp 144–151

  23. García-Laencina P, Sancho-Gómez J, Figueiras-Vidal A (2009) Pattern classification with missing data: a review. Neural Comput Appl. 9(1): 1–12

    Google Scholar 

  24. García S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9: 2677–2694

    MATH  Google Scholar 

  25. Gheyas IA, Smith LS (2010) A neural network-based framework for the reconstruction of incomplete data sets. Neurocomputing In Press, Corrected Proof

  26. Grzymala-Busse J, Goodwin L, Grzymala-Busse W, Zheng X (2005) Handling missing attribute values in preterm birth data sets. In: Proceedings of 10th international conference of rough sets and fuzzy sets and data mining and granular computing(RSFDGrC), pp 342–351

  27. Grzymala-Busse JW, Hu M (2000) A comparison of several approaches to missing attribute values in data mining. In: Ziarko W, Yao YY (eds) Rough sets and current trends in computing, vol 2005 of lecture notes in computer science, Springer, pp 378–385

  28. Hruschka ER Jr., Hruschka ER, Ebecken NF (2007) Bayesian networks for imputation in classification problems. J Intell Inf Syst 29(3): 231–252

    Article  Google Scholar 

  29. Kim H, Golub GH, Park H (2005) Missing value estimation for dna microarray gene expression data: local least squares imputation. Bioinformatics 21(2): 187–198

    Article  Google Scholar 

  30. Kwak N, Choi C-H (2002) Input feature selection by mutual information based on parzen window. IEEE Trans Pattern Anal Mach Intell 24(12): 1667–1671

    Article  Google Scholar 

  31. Kwak N, Choi C-H (2002) Input feature selection for classification problems. IEEE Trans Neural Netw 13(1): 143–159

    Article  Google Scholar 

  32. Cessie S le, van Houwelingen J (1992) Ridge estimators in logistic regression. Appl Stat 41(1): 191–201

    Article  MATH  Google Scholar 

  33. Li D, Deogun J, Spaulding W, Shuart B (2004) Towards missing data imputation: a study of fuzzy k-means clustering method. In: Proceedings of 4th international conference of rough sets and current trends in computing (RSCTC), pp 573–579

  34. Little RJA, Rubin DB (1987) Statistical analysis with missing data, wiley series in probability and statistics, 1st edn. Wiley, New York

    Google Scholar 

  35. Luengo J, García S, Herrera F (2010) A study on the use of imputation methods for experimentation with Radial Basis Function Network classifiers handling missing attribute values: the good synergy between RBFNs and EventCovering method. Neural Netw 23(3): 406–418

    Article  Google Scholar 

  36. Matsubara ET, Prati RC, Batista GEAPA, Monard MC (2008) Missing value imputation using a semi-supervised rank aggregation approach. In: Zaverucha G, da Costa ACPL (eds) ‘SBIA’, vol 5249 of lecture notes in computer science. Springer, Berlin, pp 217–226

  37. McLachlan G (2004) Discriminant analysis and statistical pattern recognition. Wiley, NY

    MATH  Google Scholar 

  38. Merlin P, Sorjamaa A, Maillet B, Lendasse A (2010) X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 73(7–9): 1103–1108

    Article  Google Scholar 

  39. Michalksi R, Mozetic I, Lavrac N (1986) The multipurpose incremental learning system aq15 and its testing application to three medical domains. In: Proceedings of 5th international conference on artificial intelligence (AAAI), pp 1041–1045

  40. Moller F (1990) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6: 525–533

    Article  Google Scholar 

  41. Nogueira BM, Santos TRA, Zárate LE (2007) Comparison of classifiers efficiency on missing values recovering: application in a marketing database with massive missing data. In: ‘CIDM’, IEEE, pp 66–72

  42. Oba S, aki Sato M, Takemasa I, Monden M, ichi Matsubara K, Ishii S (2003) A bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16): 2088–2096

    Article  Google Scholar 

  43. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8): 1226–1238

    Article  Google Scholar 

  44. Pham DT, Afify AA (2005) Rules-6: a simple rule induction algorithm for supporting decision making. In: Industrial electronics society, 2005. IECON 2005. 31st annual conference of IEEE, pp 2184–2189

  45. Pham DT, Afify AA (2006) Sri: A scalable rule induction algorithm. Proc Inst Mech Eng Part C J Mech Eng Sci 220:537–552

    Google Scholar 

  46. Plat J (1991) A resource allocating network for function interpolation. Neural Comput 3(2): 213–225

    Article  Google Scholar 

  47. Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 185–208

  48. Pyle D (1999) Data preparation for data mining. Morgan Kaufmann, Los Altos

    Google Scholar 

  49. Qin B, Xia Y, Prabhakar S (2010) Rule induction for uncertain data. Knowl Inf Syst, doi:10.1007/s10115-010-0335-7, pp 1–28 (in press)

  50. Quinlan J (1993) C4.5:programs for machine learning. Morgan Kauffman, Los Altos

    Google Scholar 

  51. Reddy C, Park J-H (2010) Multi-resolution boosting for classification and regression problems. Knowl Inf Syst, doi:10.1007/s10115-010-0358-0, pp 1–22, (in press)

  52. Saar-Tsechansky M, Provost F (2007) Handling missing values when applying classification models. J Learn Res 8: 1623–1657

    MATH  Google Scholar 

  53. Safarinejadian B, Menhaj M, Karrari M (2010) A distributed EM algorithm to estimate the parameters of a finite mixture of components. Knowl Inf Syst 23(3): 267–292

    Article  Google Scholar 

  54. Schafer JL (1997) Analysis of incomplete multivariate data. Chapman & Hall, London

    Book  MATH  Google Scholar 

  55. Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14: 853–871

    Article  Google Scholar 

  56. Song Q, Shepperd M, Chen X, Liu J (2008) Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation. J Syst Softw 81(12): 2361–2370

    Article  Google Scholar 

  57. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB (2001) Missing value estimation methods for dna microarrays. Bioinformatics 17(6): 520–525

    Article  Google Scholar 

  58. Twala B (2009) An empirical comparison of techniques for handling incomplete data using decision trees. Appl Artif Intell 23: 373–405

    Article  Google Scholar 

  59. Unnebrink K, Windeler J (n.d.)

  60. Wang H, Wang S (2010) Mining incomplete survey data through classification. Knowl Inf Syst 24(2): 221–233

    Article  Google Scholar 

  61. Wilson D (1972) Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern 2(3): 408–421

    Article  MATH  Google Scholar 

  62. Wong AKC, Chiu DKY (1987) Synthesizing statistical knowledge from incomplete mixed-mode data. IEEE Trans Pattern Anal Mach Intell 9(6): 796–805

    Article  Google Scholar 

  63. Wu X, Urpani D (1999) Induction by attribute elimination. IEEE Trans Knowl Data Eng 11(5): 805–812

    Article  Google Scholar 

  64. Zheng Z, Webb GI (2000) Lazy learning of bayesian rules. Mach Learn 41(1): 53–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Luengo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luengo, J., García, S. & Herrera, F. On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl Inf Syst 32, 77–108 (2012). https://doi.org/10.1007/s10115-011-0424-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-011-0424-2

Keywords

Navigation