Skip to main content

Advertisement

Log in

Climate change in Algeria and its impact on durum wheat

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

According to IPCC reports, the Mediterranean basin and particularly the North African area are amongst the most vulnerable regions to climate change. However, the information concerning the North African zone is very limited, and studies on climate change have never been conducted in Algeria up to now. This paper aims at bridging this information gap and initiates a first research on the impact of climate change on durum wheat cropping, the most strategic commodity in the food system and in the national economy of Algeria. Climate projections for the distant future (2071–2100), obtained from the ARPEGE-Climate model of Météo-France run under the medium A1B SRES scenario, are introduced into a simple agrometeorological crop model previously validated with field data. Two options for the sowing date are assessed: a dynamical date, chosen within the traditional sowing window by means of a rainfall criterion, or a prescribed date with supplemental irrigation on the same day. Crop development is modelled using thermal time, and maximum yield is determined from the accumulation of solar radiation. A water stress index is inferred from a daily water balance model, and actual yield is estimated from potential yield corrected by the water stress index. The model also takes into account the occurrence of dry periods during the growing season, which can induce partial or total failure of the crop cycle. Two stations, representative of two of the three agroclimatic areas where durum wheat is grown, were chosen: Algiers in the central northern region and Bordj Bou Arreridj in the eastern high plains. Climate change is not similar for both areas, but a tendency towards aridity is clear especially in spring. Future temperature and potential evapotranspiration increase in both regions with a maximum in spring and summer. In Algiers, rainfall will decrease throughout the year and mainly in spring and summer. Conversely, summer precipitation in Bordj Bou Arreridj will increase significantly. In both regions, the autumn rains will increase in the future climate, the possibilities of early sowing will be improved, crop cycle will be reduced, and harvest will take place earlier. In Algiers, yields tend to decrease in the future climate, whereas in Bordj Bou Arreridj, a dynamical (earlier) sowing will tend to keep yields at their current level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali Dib T, Monneveux P, Araus JL (1992) Adaptation à la sécheresse et notion d’idiotype chez le blé dur. II. Caractères physiologiques d’adaptation. Agronomie 12:381–393

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56

  • Amokrane A, Bouzerzour H, Benbelkacem A, Djeh A, Mahe A (2002) Etude comparative des variétés de blé dur (Triticum durum Desf.) d’origine algérienne, syrienne et européenne, sous climat méditerranéen. Sciences et Technologies N sp D, pp 33–38

  • Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Owden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res 85:85–102. doi:10.1016/S0378-4290(03)00154-0

    Article  Google Scholar 

  • Baldy C (1986) Comportement des blés dans les climats méditerranéens. Ecol Mediterr XII:73–88

  • Barkhordarian A, von Storch H, Bhend J (2013) The expectation of future precipitation change over the Mediterranean region is different from what we observe. Clim Dyn 40(1–2):225–244. doi:10.1007/s00382-012-1497-7

    Article  Google Scholar 

  • Bensalem M (1993) Etude comparative de l’adaptation à la sécheresse du blé, de l’orge et du tritical. Les colloques INRA 64:275–297

    Google Scholar 

  • Bensemane L, Bouzerzour H, Benmahammed A, Mimouni H (2011) Assessment of the phenotypic variation within two- and six-rowed barley (Hordeum vulgare L.) breeding lines under semi-arid condition. Adv Environ Biol 5:1454–1460

    Google Scholar 

  • Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical donscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. doi:10.1002/joc.1602

    Article  Google Scholar 

  • Bouaoune D, Dahmani-Megrouche M (2010) Climatic data reconstitution of North Algeria: application of neural network method correlation. Comptes Rendus Geosci 342:815–822. doi:10.1016/j.crte.2010.09.005

    Article  Google Scholar 

  • Bouzerzour H, Dekhili M (1995) Heritability’s gains from selection and genetic correlations for grain yield of barley grown in two contrasting environments. Field Crop Res 41:173–178. doi:10.1016/0378-4290(95)00005-B

    Article  Google Scholar 

  • Bouzerzour H, Monneuveux P (1992) Analyse des facteurs de stabilité des rendements de l’orge dans les conditions des hauts plateaux algériens. Séminaire sur la tolérance à la sécheresse, INRA, France, les colloques 64:205–215

    Google Scholar 

  • Bouzerzour H, Oudina M (1986) Effet des dates et densités de semis sur le rendement du blé et de l’orge dans la région de Sétif. Revue céréalière 15, ITGC, Alger

  • BSA (2011) Bulletin de statistique agricole. Ministère de l’Agriculture, Série B

  • Cline W (2007) Global warming and agriculture–impact estimates by country. Center for Glob Dev, Washington

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1031–1106

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26. doi:10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Doorenbos J, Kassam A (1979) Yield response to water. FAO irrigation and drainage paper 33. FAO, Rome

  • Francisco J, Meza-Daniel S (2009) Dynamic adaptation of maize and wheat to climate change. Clim Change 94:143–156. doi:10.1007/s10584-009-9544-z

    Article  Google Scholar 

  • Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Chang 62(3–4):195–209. doi:10.1016/j.gloplacha.2008.02.002

    Article  Google Scholar 

  • Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from global warming. Glob Planet Change 68:209–224. doi:10.1016/j.gloplacha.2008.02.002

    Article  Google Scholar 

  • Gifford RM, Morison JIL (1993) Crop [wheat] responses to the global increase in atmospheric carbon dioxide concentration. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science 1. Proceedings of the international crop science congress. Crop Science Society of America, Madison, USA, pp 325–331

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Goodess C, Jacob D, DDcob M, Gutti CJ, Huth R, Kendon E, Leckebusch G, Lorenz P, Pavan V (2009) Downscaling methods, data and tools for input to impacts assessments. In: van der Linden P, Mitchell JFB (eds) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, pp 59–78

  • Guernña A, Ruiz-Ramos M, Díaz-Ambrona CH, Conde J, Mínguez MI (2001) Assessment of climate change and agriculture in Spain using climate models. Agron 93:237–249

    Article  Google Scholar 

  • Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D, Medjrab A (2013) Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria. Natl Hazards 65:1293–1311. doi:10.1007/s11069-012-0411-2

    Article  Google Scholar 

  • Hansen JW, Potgieter A, Tippett MK (2004) Using a general circulation model to forecast regional wheat yields in northeast Australia. Agric For Meteorol 127:77–92. doi:10.1016/j.agrformet.2004.07.005

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998) Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8:161–179. doi:10.1016/S1161-0301(98)00020-3

    Article  Google Scholar 

  • Jamieson PD, Berntsen J, Ewert F, Kimball BA, Olesen JE, Pinter PJ, Porter JR, Semenov MA (2000) Modelling CO2 effects on wheat with varying nitrogen supplies. Agric Ecosyst Environ 82:27–37. doi:10.1016/S0167-8809(00)00214-0

    Article  CAS  Google Scholar 

  • Kaiser HM, Riha SJ, Wilks DS, Rossiter DG, Sampath R (1993) A farm-level analysis of economic and agronomic impacts of gradual climate warming. Am J Agric Econ 75(2):387–398

    Article  Google Scholar 

  • Khaledian MR, Mailhol JC, Ruelle P, Rosique P (2009) Adapting PILOTE model for water and yield management under direct seeding system: the case of corn and durum wheat in a Mediterranean context. Agric Water Manag 96:757–770. doi:10.1016/j.agwat.2008.10.011

    Article  Google Scholar 

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A Series A 63 A(1):24–40. doi:10.1111/j.1600-0870.2010.00475

  • Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the eastern Mediterranean. Meteorol Atmos Phys 89:69–85. doi:10.1007/s00703-005-0122-2

    Article  Google Scholar 

  • Lakhdari H, Ayad A (2009) Les conséquences du changement climatique sur le Développement de l’agriculture en Algérie: Quelles stratégies d’adaptation face à la rareté de l’eau ? Cinquième colloque international: Énergie, changements Climatiques et Développement Durable, Hammamet (Tunisie), pp 15–17

  • Lhomme JP, Katerji N (1991) A simple modelling of crop water balance for agrometeorological applications. Ecol Model 57:11–25. doi:10.1016/03043800(91)90052-3

    Article  Google Scholar 

  • Lhomme JP, Mougou R, Mansour M (2009) Potential impact of climate change on durum wheat cropping in Tunisia. Clim Chang 96:549–564. doi:10.1007/s00704-012-0764-1

    Article  Google Scholar 

  • Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158. doi:10.5194/adgeo-12-153-2007

    Article  Google Scholar 

  • Malki M, Redjel N (2000) Durum wheat yield sustainability or ecosystem sustainability?: effects of state policies on farmers’ behaviour in Algeria. In: Royo C, Nachit M, Di Fonzo N, Arau s JL (eds), Durum wheat improvement in the Mediterranean region: new challenges. Options Méditerranéennes: Série A. Séminaires Méditerranéens, CIHEAM Zaragoza, no 40, pp 569–573

  • Manderscheid R, Burkart S, Bramm A, Weigel HJ (2003) Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. Eur J Agron 19:411–425. doi:10.1016/S1161-0301(02)00133-8

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766

    Article  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc 281:277–294

    Article  Google Scholar 

  • Moonen AC, Ercoli L, Mariotti M, Masoni A (2002) Climate change in Italy indicated by agrometeorological indices over 122 years. Agric For Meteorol 111:13–27. doi:10.1016/S0168-1923(02)00012-6

    Article  Google Scholar 

  • Moriondo M, Ginnakopulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Chang 104:679–701. doi:10.1007/s10584-010-9871-0

    Article  Google Scholar 

  • Mougou R, Mansour M, Iglesias A, Zitouna Chebbi R, Battaglini A (2011) Climate change and agricultural vulnerability: a case study of rain-fed wheat in Kairouan, Central Tunisia. Reg Environ Change 11:137–142. doi:10.1007/s10113-010-0179-4

    Article  Google Scholar 

  • Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1199–1265

  • Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. J Clim 22:114–132

    Article  Google Scholar 

  • Palutikof JP, Wigley TML (1996) Developing climate change scenarios for the Mediterranean region. In: Jeftic L, Keckes S, Pernetta JC (eds) Climatic change and the mediterranean. Edward Arnold Publ, London, pp 27–56

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fisher G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67. doi:10.1016/j.gloenvcha.2003.10.008

    Article  Google Scholar 

  • Patricola CM, Cook K (2010) Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35(1):193–212. doi:10.1007/s00382-009-0623-7

    Article  Google Scholar 

  • Richter GM, Semenov MA (2005) Modeling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agric Syst 84:77–97. doi:10.1016/j.agsy.2004.06.011

    Article  Google Scholar 

  • Rosenzweig C, Tubiello FN (1997) Impacts of global climate change on Mediterranean agriculture: current methodologies and future directions. An introductory essay. Mitig Adapt Strat Glob Chang 1:219–232. doi:10.1007/BF00517804

    Article  Google Scholar 

  • Sanabria J, Lhomme JP (2013) Climate change and potato cropping in the Peruvian Altiplano. Theor Appl Climatol 112:683–695. doi:10.1007/s00704-012-0764-1

    Article  Google Scholar 

  • Sanabria J, Calanca P, Alarcón C, Canchari G (2014) Potential impact of early twenty-first century changes in temperature and precipitation in rainfed annual crops in the Central Andes of Peru. Reg Environ Change 14:1533–1548. doi:10.1007/s10113-014-0595-y

    Article  Google Scholar 

  • Schilling J, Freier KP, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric Ecosyst Environ 156:12–26. doi:10.1016/j.agee.2012.04.021

    Article  Google Scholar 

  • Seltzer P (1949) Le climat de l’Algérie. Alger, pp 219

  • Tao F, Zhang Z (2011) Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Clim Change 109:409–432. doi:10.1007/s10584-010-9883-9

    Article  Google Scholar 

  • Terray L, Page C, Déqué M, Flecher C (2010) L’évolution du climat en France au travers de quelques indicateurs agroclimatiques. Livre Vert du projet CLIMATOR, Changement climatique, agriculture et forêt en France: simulations d’impacts sur les principales espèces. Ed. ADEME

  • Touchan R, Anchukaitis KJ, Meko DM, Sabir M, Attalah S, Aloui A (2011) Spatiotemporal drought variability in north-western Africa over the last nine centuries. Clim Dyn 37:237–252. doi:10.1007/s00382-010-0804-4

    Article  Google Scholar 

  • Van Oosterom EJ, Ceccarelli S, Peacock JM (1993) Yield response of barley to rainfall and temperature in Mediterranean environments. J Agric Sci 121:307–313

    Article  Google Scholar 

  • Ventrella D, Charfedine M, Moriondo M, Rinaldi M, Bindi M (2011) Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Reg Environ Change 12:407–417. doi:10.1007/s10113-011-0256-3

    Article  Google Scholar 

  • Xiao G, Zhang Q, Yao Y, Zhao H, Wang R, Bai H, Zhang F (2008) Impact of recent climatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China. Agric Ecosyst Environ 127:37–42. doi:10.1016/j.agee.2008.02.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Paul Lhomme.

Additional information

Editor: Will Steffen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

The appendix (Modelling dry matter production) (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chourghal, N., Lhomme, J.P., Huard, F. et al. Climate change in Algeria and its impact on durum wheat. Reg Environ Change 16, 1623–1634 (2016). https://doi.org/10.1007/s10113-015-0889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0889-8

Keywords

Navigation