Skip to main content
Log in

Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM)

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

Traditional tools found in occupational risk assessments are a preliminary hazard analysis and checklists, both based on the isolation of a particular activity from the entire process and created for application in specific environments of manufacture. This strategy makes the results of such evaluations distant from real situations. Construction is a complex endeavor and can involve multiple contractors and groups working under each contractor. Work occurs under constant change and varying demands. In this context, as workers move through their daily journey, their health and safety are often are threatened by activities carried out by other contractors or groups. The study utilizes the Functional Resonance Analysis Method (FRAM), which aims to describe how function couplings may be combined in such a way that variability of performance, rather than failure or poor functioning, creates an occupational risk. The study also contributes to the evolution of FRAM, by proposing the application of the analytic hierarchy process, to investigate the relative importance of the criteria and alternatives for the identification of phenotypes of performance variability, as well as the aggregation of variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ali HH, Nsairat SF (2008) Developing a green building assessment tool for developing countries: case of Jordan. Build Environ 44:1053–1064

    Article  Google Scholar 

  • Andersen S, Mostue BA (2012) Risk analysis and risk management approaches applied to the petroleum industry and their applicability to IO concepts. Saf Sci 50:2010–2019

    Article  Google Scholar 

  • Andersson N, Broberg A, Braberg A, Janlert L, Jonsson E, Holmlund K, Pettersson J (2002) Emergent interaction: a pré-study. Department of Computing Science, Umea University, Umea

    Google Scholar 

  • Aneziris ON, Topali E, Papazoglou IA (2012) Occupational risk of building construction. Reliab Eng Syst Saf 105:36–46

    Article  Google Scholar 

  • ASTM (2011) E 2114-01 Standard, terminology for sustainability relative to the performance of buildings. ASTM International

  • Badri A, Nadeau S, Gbodossou A (2012) Proposal of a risk-factor-based analytical approach for integrating occupational health and safety into project risk evaluation. Accid Anal Prev 48:223–234

    Article  Google Scholar 

  • Bereton S, Mclouth L, Odell B, Singh M, Trent M, Yatabe J (1997) Overview of the preliminary safety analysis of the national ignition facility. J Fusion Energy 16:85–94

    Article  Google Scholar 

  • Bibbiy A (2010) Empleos verdes en La construcción: Cambios pequeños, gran efecto. Trabajo, La Revista de La OIT 70:38–41

    Google Scholar 

  • Carvalho PVR (2011) The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliab Eng Syst Saf 96:1482–1498

    Article  Google Scholar 

  • Chang KF, Chiang CM, Chou PC (2007) Adapting aspects of GBTool 2005 – searching for suitability in Taiwan. Build Environ 42:310–316

    Article  Google Scholar 

  • Chen H (2010) Green and healthy jobs for labor occupational health program. The Center for Construction Research and Training Report. University of California at Berkeley. http://www.cpwr.com/sites/default/files/publications/Green-Healthy%20Jobs%20fnl%20for%20posting.pdf. Accessed 21 Jan 2012

  • Costa HG (2006) Multicriteria decision aid: AHP. Abepro, Rio de Janeiro

    Google Scholar 

  • Ding GKC (2008) Sustainable construction: the role environmental assessment tools. J Environ Manag 86:451–464

    Article  Google Scholar 

  • FDA (Food and Drug Administration) (2012) Safety of nanomaterials in cosmetic products. http://www.fda.gov/downloads/Cosmetics/GuidanceComplianceRegulatoryInformation/GuidanceDocuments/UCM300932.pdf. Accessed 20 Nov 2013

  • Fung IW, Lo TY, Tung KCF (2012) Towards a better reliability of risk assessment: development of a qualitative and quantitative risk evaluation model (Q2REM) for different trades of construction works in Hong Kong. Accid Anal Prev 48:167–184

    Article  Google Scholar 

  • Fung IWH, Tam VWY, Lo TY, Lu LLH (2010) Developing a risk assessment model for construction safety. Int J Project Manag 28:593–600

    Article  Google Scholar 

  • Gambatese J, Rajendran S, Behm M (2007) Green design and construction: understanding the effects on construction worker safety and health. Prof Saf 52:5–28

    Google Scholar 

  • Geetha MW, Xiuwen SD, Ted M, Elizabeth H, Yurong M (2007) Costs of occupational injuries in construction in the United States. Accid Anal Prev 39:1258–1266

    Article  Google Scholar 

  • Gomes LFAM, Araya M, Carignano C (2004) Decision-making in complex scenarios: introduction to discrete methods of multicriteria decision. Pioneira, São Paulo

    Google Scholar 

  • Grecco CHS, Vidal MCR, Cosenza CAN, Santos IJAL, Carvalho PVR (2014) Safety culture assessment: a fuzzy model for improving safety performance in a radioactive installation. Prog Nucl Energy 70:71–83

    Article  Google Scholar 

  • Guranli GE, Mungen U (2009) An occupational safety risk analysis method at construction sites using fuzzy sets. Int J Ind Ergon 39:371–387

    Article  Google Scholar 

  • Hollnagel E (2004) Barriers and accident prevention. Ashgate, Aldershot

    Google Scholar 

  • Hollnagel E (2007) Why do we need resilience engineering? http://www.sites.google.com/site/erikhollnagel2/whatisresilienceengineering%3F. Accessed 17 Jan 2011

  • Hollnagel E (2012) FRAM: the functional resonance analysis methods. Ashgate, Aldershot

    Google Scholar 

  • Hollnagel E, Woods DD, Levenson N (2006) Resilience engineering: concepts e precepts. Ashgate, Aldershot

    Google Scholar 

  • ILO (International Labor Organization) (2009) Inspecting occupational safety and health in the construction industry. International Training Centre ISBN 978-92-9049-489-8

  • ISO/IEC (2009) Risk management: risk assessment techniques ISO/IEC 31010. International Organization for Standardization/International Eletrotechinical Commission

  • Jou Y, Lin C, Yenn T, Yang C, Yang L, Tsai R (2009) The implementation of a human factors engineering checklist for human–system interfaces upgrade in nuclear power plants. Saf Sci 47:1016–1025

    Article  Google Scholar 

  • Levenson N (2004) A new accident model for engineering safer systems. Saf Sci 42:237–270

    Article  Google Scholar 

  • Macdonald MA, Lipscomb JH, Bondy J, Glazner J (2009) Safety is everyone’s job: the key to safety on a large university construction site. J Saf Res 40:53–61

    Article  Google Scholar 

  • Mehta RK, Agnew MJ (2010) Analysis of individual and occupational risk factors on task performance and biomechanical demands for simulated drilling task. Int J Ind Ergon 40:584–591

    Article  Google Scholar 

  • Mitropoulos P, Namboodiri M (2011) New method for measuring the safety risk of construction activities: task demand assessment. J Constr Eng Manag 137:30–38

    Article  Google Scholar 

  • Navon R, Kolton O (2006) Model for automated monitoring of all hazards in building construction. J Constr Eng Manag 132:733–740

    Article  Google Scholar 

  • Nieto-Morote A, Ruz-Vila F (2009) A fuzzy approach to construction project risk assessment. Int J Project Manag 29:220–231

    Article  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2009) Summary of the making green jobs safe workshop. http://www.cdc.gov/niosh/docs/2011-201/pdfs/2011-201.pdf. Accessed 12 Jun 2012

  • Ortiz O, Castells F, Sonnemann G (2009) Sustainability in the construction industry: a review of recent developments based on LCA. Constr Build Mater 23:28–39

    Article  Google Scholar 

  • Papadopoulos G, Georgiadou P, Papazoglou C, Michaliou K (2010) Occupational and public health and safety in a changing work environment: an integrated approach for risk assessment and prevention. Saf Sci 48:943–949

    Article  Google Scholar 

  • Parra-Lopez C, Calatravra J, Haro-Gimenez T (2007) A multi-criteria evaluation of the environmental performances of conventional, organic and integrated olive-growing systems in the south of Spain based on experts knowledge. Renew Agric Food Syst 22(3):189–203

    Article  Google Scholar 

  • Perez-Alonso J, Carreno-Ortega A, Callejon-Ferre AJ, Vaquez-Cabrera J (2011) Preventive activity in the greenhouse-construction industry of south-eastern Spain. Saf Sci 49:345–354

    Article  Google Scholar 

  • Peterson DL, Silsbec DG, Sdmoldt DL (1995) A planning approach for developing inventory and monitoring programs in natural parks - Work document. Natural Resources Report. http://www.nature.nps.gov/im/monitor/peterson.pdf. Acessed 15 June 2009

  • Pinto A, Nunes IL, Ribeiro LA (2011) Occupational risk assessment in construction industry: overview and reflection. Saf Sci 49:616–624

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York

    MATH  Google Scholar 

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26

    Article  MATH  Google Scholar 

  • Saurin TA, Junior GCC (2011) Evaluation and improvement of a method for assessing HSMS from the resilience engineering perspective: a case study of an electricity distributor. Saf Sci 49:355–368

    Article  Google Scholar 

  • SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks) (2007) The appropriateness of the risk-assessment methodology in accordance with the technical guidance. Documents for new and existing substances for assessing the risks of nanomaterials. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_010.pdf. Accessed 11 Jan 2012

  • Schulte PA, Heidel D, Okun A, Branche C (2010) Making green jobs safe. Ind Health 48:377–379

    Article  Google Scholar 

  • Sennett R (1998) The corrosion of character: the personal. Consequences of work in the new capitalism. W.W. Norton, London

    Google Scholar 

  • Steen R, Aven T (2011) A risk perspective suitable for resilience engineering. Saf Sci 49:292–297

    Article  Google Scholar 

  • Swuste P, Gulijk CV, Zwaard W (2010) Safety metaphors and theories: a review of occupational safety literature of the US, UK and the Netherlands, till the first part of the 20th century. Saf Sci 48:1000–1018

    Article  Google Scholar 

  • Tiwari DN, Loof R, Paudyal GN (1999) Environmental-economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agric Syst 60(2):99–112

    Article  Google Scholar 

  • USGBC (United States Green Building Council) (2009) LEED 2009 for new construction and major renovations rating system. http://www.usgbc.org/ShowFile.aspx?DocumentID=5546. Accessed 21 Jun 2011

  • Vidal AL, Sahin E, Martelli N, Berhoune N, Bonan B (2010) Applying AHP to select drugs to be produced by anticipation in a chemotherapy compounding unit. Expert Syst Appl 37:1528–1534

    Article  Google Scholar 

  • Woods DD (2006) Essential characteristics of resilience. In: Hollnagel E, Woods DD, Levenson N (eds) Resilience engineering: concepts and precepts. Ashgate, Aldershot

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Victor Rodrigues de Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, L.V., Haddad, A.N. & de Carvalho, P.V.R. Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM). Cogn Tech Work 17, 559–573 (2015). https://doi.org/10.1007/s10111-015-0337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-015-0337-z

Keywords

Navigation