Skip to main content
Log in

Photobiomodulation and diffusing optical fiber on spinal cord’s impact on nerve cells from normal spinal cord tissue in piglets

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Experts have proven that photobiological regulation therapy for spinal cord injury promotes the spinal repair following injury. The traditional irradiation therapy mode is indirect (percutaneous irradiation), which could significantly lower the effective use of light energy. In earlier studies, we developed an implantable optical fiber that one can embed above the spinal cord lamina, and the light directly is cast onto the surface of the spinal cord in a way that can dramatically improve energy use. Nonetheless, it remains to be seen whether near-infrared light diffused by embedded optical fiber can have side effects on the surrounding nerve cells. Given this, we implanted optical fiber on the lamina of a normal spinal cord to observe the structural integrity of the tissue using morphological staining; we also used immunohistochemistry to detect inflammatory factors. Considering the existing studies, we meant to determine that the light energy diffused by embedded optical fiber has no side effect on the normal tissue. The results of this study will lay a foundation for the clinical application of the treatment of spinal cord injury by near-infrared light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Katoh S, Enishi T, Sato N (2014) High incidence of acute traumatic spinal cord injury in a rural population in Japan in 2011 and 2012: an epidemiological study. Spinal Cord 52(4):264–267

    Article  CAS  PubMed  Google Scholar 

  2. Jain NB, Ayers GD, Peterson EN et al (2015) Traumatic spinal cord injury in the United States, 1993-2012. JAMA 313(22):2236–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hiremath SV, Hogaboom NS, Roscher MR et al (2017) Longitudinal prediction of quality-of-life scores and locomotion in individuals with traumatic spinal cord injury. Arch Phys Med Rehabil 98(12):2385–2392

    Article  PubMed  Google Scholar 

  4. DG, Schwartz CE, Finkelstein JA et al (2018) Health conditions: effect on function, health-related quality of life, and life satisfaction after traumatic spinal cord injury. A prospective observational registry cohort study. Arch Phys Med Rehabil 99(3):443–451

    Article  Google Scholar 

  5. Rodemer W, Selzer ME (2019) Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury. Neural Regen Res 14(3):399–404

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281–299

    Google Scholar 

  7. Riemann L, Younsi A, Scherer M et al (2018) Transplantation of neural precursor cells attenuates chronic immune environment in cervical spinal cord. injury 9:1–12

    Google Scholar 

  8. Ma SF, Chen YJ, Zhang JX et al (2015) Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav Immun 45:157–170

    Article  CAS  PubMed  Google Scholar 

  9. Fleming JC, Norenberg MD, Ramsay DA et al (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129(Pt 12):3249–3269

    Article  PubMed  Google Scholar 

  10. Pruss H, Kopp MA, Brommer B et al (2011) Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices and resolution plateau. Brain Pathol 21:652–660

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsai S-R, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B Biol 170:197–207

    Article  CAS  Google Scholar 

  12. Hwang MH, Son HG, Lee JW et al (2018) Photobiomodulation of extracellular matrix enzymes in human nucleus pulposus cells as a potential treatment for intervertebral disk degeneration. Sci Rep 8(1):11654

    Article  PubMed  PubMed Central  Google Scholar 

  13. Amat A, Rigau J, Waynant RW et al (2006) The electric field induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism. Journal of photochemistry and photobiology. Biology 82(2):152–160

    CAS  PubMed  Google Scholar 

  14. Paula AA, Nicolau RA, Lima Mde O et al (2014) Low-intensity laser therapy effect on the recovery of traumatic spinal cord injury. Lasers Med Sci 29(6):1849–1859

    Article  PubMed  Google Scholar 

  15. Avci P, Gupta A, Sadasivam M et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32(1):41–52

    PubMed  PubMed Central  Google Scholar 

  16. Dos Anjos LMJ, Salvador PA, de Souza ÁC et al (2019) Modulation of immune response to induced-arthritis by low-level laser therapy. J Biophotonics 12(2):e201800120

    Article  PubMed  Google Scholar 

  17. Gendron DJ, Hamblin MR (2019) Applications of photobiomodulation therapy to musculoskeletal disorders and osteoarthritis with particular relevance to Canada. Photobiomodul Photomed laser Surg 37(7):408–420

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liang Z, Lei T, Wang S et al (2020) Photobiomodulation by diffusing optical fiber on spinal cord:a feasibility study in piglet model. J Biophotonics 13(4):e201960022

    Article  CAS  PubMed  Google Scholar 

  19. Song JW, Li K, Liang ZW et al (2017) Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci Rep 7(1):620

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang XL, Tian FH, Soni SS et al (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang XL, Tian FH, Reddy DD et al (2017) Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 37(12):3789–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gonzalez-Lima F, Barrett DW (2014) Augmentation of cognitive brain functions with transcranial lasers. Front Syst Neurosci 8:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez-Lima F, Auchter A (2015) Protection against neurodegeneration with low-dose methylene blue and near-infrared light. Front Cell Neurosci 9:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Jacques SL, Zheng L (1995) MCML--Monte Carlo modeling of light transport in multi-layered tissues. Methods Biomed 47(2):131–146

    CAS  Google Scholar 

  26. Moro C, Torres N, Arvanitakis K et al (2017) No evidence for toxicity after long-term photobiomodulation in normal non-human primates. Exp Brain Res 235(10):3081–3092

    Article  PubMed  Google Scholar 

  27. Guo Y, Wang L, Ma R et al (2016) JiangTang Xiao Ke granule attenuates cathepsin K expression and improves IGF-1 expression in the bone of high fat diet induced KK-Ay diabetic mice. Life Sci 148:24–30

    CAS  PubMed  Google Scholar 

  28. Zhang J, Sun J, Zheng Q et al (2020) Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro. J Cell Mol Med 24(1):476–487

    Article  CAS  PubMed  Google Scholar 

  29. Sun J, Zhang J, Li K et al (2020) Photobiomodulation therapy inhibit the activation and secretory of astrocytes by altering macrophage polarization. Cell Mol Neurobiol 40(1):141–152

    Article  CAS  PubMed  Google Scholar 

  30. Li K , Liang Z , Zhang J et al (2020) Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation. Lasers Med Sci 35(2):1509–1518

  31. Byrnes KR, Waynant RW, Ilev IK et al (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185

    Article  PubMed  Google Scholar 

  32. Piao D, Sypniewski LA, Bailey C et al (2018) Flexible nine-channel photodetector probe facilitated intraspinal multisite transcutaneous photobiomodulation therapy dosimetry in cadaver dogs. J Biomed Opt 23(1):1–4

    Article  PubMed  Google Scholar 

  33. Keller E, Ishihara H, Nadler A et al (2002) Evaluation of brain toxicity following near infrared light exposure after indocyanine green dye injection. J Neurosci Methods 117(1):23–31

    Article  PubMed  Google Scholar 

  34. Giller CA, Liu H, German DC et al (2009) A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience. J Neurosurg 110(2):263–273

    Article  PubMed  Google Scholar 

  35. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440

    Article  CAS  PubMed  Google Scholar 

  36. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashmi JT, Huang YY, Osmani BZ et al (2010) Role of low-level laser therapy in neurorehabilitation. PM & R 2(12 Suppl 2):S292–S305

    Google Scholar 

  38. Li Y, Liu Z, Xin H et al (2014) The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia 62(1):1–16

    Article  PubMed  Google Scholar 

Download references

Funding

A National Natural Scientific Foundation of China Grant (NO. 81572151) and the key research and development program in Social Development of Shaanxi Province (grant number 2020ZDLSF02-05) and the Key Science and Technology Program in Social Development of Shaanxi Province (grant number 2016SF-012, 2017SF-021) supported the current study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tan Ding, Xueyu Hu or Zhe Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All animal care and experimental programs were conducted according to standard All applicable international and national ethical guidelines (National Institutes of Health Guide to the use of Laboratory Animals) and approved by The Animal Care Ethics Committee of the Fourth Military Medical University (KY20172036-I).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, X., Liang, Z., Zhang, J. et al. Photobiomodulation and diffusing optical fiber on spinal cord’s impact on nerve cells from normal spinal cord tissue in piglets. Lasers Med Sci 37, 259–267 (2022). https://doi.org/10.1007/s10103-020-03231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03231-8

Keywords

Navigation