Skip to main content
Log in

Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy (LLLT) has shown efficacy in muscle bioenergetic activation and its effects could influence the mechanical performance of this tissue during physical exercise. This study tested whether endurance training associated with LLLT could increase human muscle performance in isokinetic dynamometry when compared to the same training without LLLT. The primary objective was to determine the fatigue index of the knee extensor muscles (FIext) and the secondary objective was to determine the total work of the knee extensor muscles (TWext). Included in the study were 45 clinically healthy women (21 ± 1.78 years old) who were randomly distributed into three groups: CG (control group), TG (training group) and TLG (training with LLLT group). The training for the TG and TLG groups involved cycle ergometer exercise with load applied to the ventilatory threshold (VT) for 9 consecutive weeks. Immediately after each training session, LLLT was applied to the femoral quadriceps muscle of both lower limbs of the TLG subjects using an infrared laser device (808 nm) with six 60-mW diodes with an energy of 0.6 J per diode and a total energy applied to each limb of 18 J. VT was determined by ergospirometry during an incremental exercise test and muscle performance was evaluated using an isokinetic dynamometer at 240°/s. Only the TLG showed a decrease in FIext in the nondominant lower limb (P = 0.016) and the dominant lower limb (P = 0.006). Both the TLG and the TG showed an increase in TWext in the nondominant lower limb (P < 0.001 and P = 0.011, respectively) and in the dominant lower limb (P < 0.000 and P < 0.000, respectively). The CG showed no reduction in FIext or TWext in either lower limb. The results suggest that an endurance training program combined with LLLT leads to a greater reduction in fatigue than an endurance training program without LLLT. This is relevant to everyone involved in sport and rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17

    Article  PubMed  CAS  Google Scholar 

  2. Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383. doi:10.2203/dose-response.09-027.Hamblin

    Article  PubMed  Google Scholar 

  3. Leal Junior EC, Lopes-Martins RA, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088. doi:10.1007/s00421-009-1321-1

    Article  PubMed  Google Scholar 

  4. Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscara MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101(1):283–288

    Article  PubMed  Google Scholar 

  5. Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM (2010) Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 25(1):115–120. doi:10.1007/s10103-009-0697-9

    Article  PubMed  Google Scholar 

  6. Liu XG, Zhou YJ, Liu TC, Yuan JQ (2009) Effects of low-level laser irradiation on rat skeletal muscle injury after eccentric exercise. Photomed Laser Surg 27(6):863–869. doi:10.1089/pho.2008.2443

    Article  PubMed  CAS  Google Scholar 

  7. Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, Junior EM, Parizotto NA (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358. doi:10.1007/s10103-010-0855-0

    Article  PubMed  Google Scholar 

  8. Baroni BM, Leal Junior EC, De Marchi T, Lopes AL, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110(4):789–796. doi:10.1007/s00421-010-1562-z

    Article  PubMed  Google Scholar 

  9. Bakeeva LE, Manteifel VM, Rodichev EB, Karu TI (1993) Formation of gigantic mitochondria in human blood lymphocytes under the effect of an He-Ne laser. Mol Biol (Mosk) 27(3):608–617

    CAS  Google Scholar 

  10. Manteifel VM, Karu TI (2005) Structure of mitochondria and activity of their respiratory chain in subsequent generations of yeast cells exposed to He-Ne laser light. Izv Akad Nauk Ser Biol 6:672–683

    PubMed  Google Scholar 

  11. Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95(2):89–92

    Article  PubMed  CAS  Google Scholar 

  12. Passarella S, Ostuni A, Atlante A, Quagliariello E (1988) Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser. Biochem Biophys Res Commun 156(2):978–986

    Article  PubMed  CAS  Google Scholar 

  13. Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86(3):673–680

    Article  PubMed  CAS  Google Scholar 

  14. Manteifel V, Bakeeva L, Karu T (1997) Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: appearance of giant mitochondria. J Photochem Photobiol B 38(1):25–30

    Article  PubMed  CAS  Google Scholar 

  15. American College of Sports Medicine Position Stand (1998) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 30(6):975–991

    Article  Google Scholar 

  16. Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30(3):129–137

    Article  PubMed  Google Scholar 

  17. Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37(9):737–763

    Article  PubMed  Google Scholar 

  18. Hawley JA (2009) Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 34(3):355–361

    Article  PubMed  CAS  Google Scholar 

  19. Bentley DJ, Newell J, Bishop D (2007) Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med 37(7):575–586

    Article  PubMed  Google Scholar 

  20. Lamb GD, Stephenson DG (2006) Point: lactic acid accumulation is an advantage/disadvantage during muscle activity. J Appl Physiol 100(4):1410–1412

    Article  PubMed  CAS  Google Scholar 

  21. Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28(5):653–658. doi:10.1089/pho.2009.2688

    Article  PubMed  Google Scholar 

  22. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH (2004) Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol 91(1):22–29. doi:10.1007/s00421-003-0933-0

    Article  PubMed  Google Scholar 

  23. Caspersen CJ, Pereira MA, Curran KM (2000) Changes in physical activity patterns in the United States, by sex and cross-sectional age. Med Sci Sports Exerc 32(9):1601–1609

    Article  PubMed  CAS  Google Scholar 

  24. von Leupoldt A, Ambruzsova R, Nordmeyer S, Jeske N, Dahme B (2006) Sensory and affective aspects of dyspnea contribute differentially to the Borg scale’s measurement of dyspnea. Respiration 73(6):762–768

    Google Scholar 

  25. Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to the mitochondrial energy transfer. J Clin Laser Med Surg 16(3):159–165

    PubMed  CAS  Google Scholar 

  26. Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24(6):857–863. doi:10.1007/s10103-008-0633-4

    Article  PubMed  Google Scholar 

  27. Pincivero DM, Gandaio CM, Ito Y (2003) Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions. Eur J Appl Physiol 89(2):134–141. doi:10.1007/s00421-002-0739-5

    Article  PubMed  Google Scholar 

  28. Gorgey AS, Wadee AN, Sobhi NN (2008) The effect of low-level laser therapy on electrically induced muscle fatigue: a pilot study. Photomed Laser Surg 26(5):501–506. doi:10.1089/pho.2007.2161

    Article  PubMed  Google Scholar 

  29. Leal Junior EC, Lopes-Martins RA, Vanin AA, Baroni BM, Grosselli D, De Marchi T, Iversen VV, Bjordal JM (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431. doi:10.1007/s10103-008-0592-9

    Article  PubMed  Google Scholar 

  30. Leal Junior EC, Lopes-Martins RA, Dalan F, Ferrari M, Sbabo FM, Generosi RA, Baroni BM, Penna SC, Iversen VV, Bjordal JM (2008) Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomed Laser Surg 26(5):419–424. doi:10.1089/pho.2007.2160

    Article  PubMed  Google Scholar 

  31. Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE (1999) Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A 96(3):1129–1134

    Article  PubMed  CAS  Google Scholar 

  32. Irving BA, Rutkowski J, Brock DW, Davis CK, Barrett EJ, Gaesser GA, Weltman A (2006) Comparison of Borg- and OMNI-RPE as markers of the blood lactate response to exercise. Med Sci Sports Exerc 38(7):1348–1352. doi:10.1249/01.mss.0000227322.61964.d2

    Article  PubMed  CAS  Google Scholar 

  33. Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol Endocrinol Metab 290(6):E1237–E1244

    Article  PubMed  CAS  Google Scholar 

  34. Vieira WHB, Goes R, Costa F, Parizotto NA, Perez S, Baldissera V, Munin F, Schwantes M (2006) Adaptação enzimática da LDH em ratos submetidos a treinamento aeróbio em esteira e laser de baixa intensidade. Rev Bras Fisioter 10:205–211

    Article  Google Scholar 

  35. Spriet LL, Howlett RA, Heigenhauser GJ (2000) An enzymatic approach to lactate production in human skeletal muscle during exercise. Med Sci Sports Exerc 32(4):756–763

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Physical Therapy and the Department of Physiological Sciences of the Federal University of São Carlos for assistance with this study, the research volunteers, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for partial funding of the research, and the DMC Equipamentos for manufacturing and lending the laser device.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouber Hérickson de Brito Vieira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Brito Vieira, W.H., Ferraresi, C., de Andrade Perez, S.E. et al. Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27, 497–504 (2012). https://doi.org/10.1007/s10103-011-0984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0984-0

Keywords

Navigation