Skip to main content

Advertisement

Log in

Aerobic culture of methanogenic archaea without an external source of hydrogen

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Culturing methanogenic archaea is fastidious, expensive, and requires an external source of hydrogen and carbon dioxide. Until now, these microorganisms have only been cultivated under strictly anaerobic conditions. We previously developed a single versatile culture medium containing sugars and anti-oxydants for cultivating all human known methanogens. Performing aerobic cultures in the presence of Bacteroides thetaiotaomicron, which produces hydrogen, allows for cultivation of Methanobrevibacter smithii which itself produces methane. To obtain colonies, we cultivated M. smithii in an agar plate in the upper part of a double chamber flask with a liquid culture of B. thetaiotaomicron in the lower compartment. We subsequently cultured four other methanogenic species for the first time and successfully isolated 13 strains of M. smithii and nine strains of Methanobrevibacter oralis from 100 stools and 45 oral samples. This procedure allows aerobic isolation and antibiotic susceptibility testing. This changes the ability to routinely study methanogens, which have been neglected in clinical microbiology laboratories and may be useful for biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Whitman WB (2008) Metabolic, phylogenetic and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  2. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  CAS  Google Scholar 

  4. Khelaifia S, Raoult D, Drancourt M (2013) A versatile medium for cultivating methanogenic archaea. PLoS ONE 8, e61563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller TL, Wolin MJ (1985) Methanosphaera stadtmanae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    Article  CAS  PubMed  Google Scholar 

  7. Wolfe RS, Metcalf WW (2010) A vacuum-vortex technique for preparation of anoxic solutions or liquid culture media in small volumes for cultivating methanogens or other strict anaerobes. Anaerobe 16:216–219

    Article  PubMed  Google Scholar 

  8. Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478

    Article  CAS  Google Scholar 

  9. Dione N, Khelaifia S, Lagier JC, Raoult D (2015) The aerobic activity of metronidazole against anaerobic bacteria. Int J Antimicrob Agents 45:537–540

    Article  CAS  PubMed  Google Scholar 

  10. La Scola B, Khelaifia S, Lagier JC, Raoult D (2014) Aerobic culture of anaerobic bacteria using antioxidants: a preliminary report. Eur J Clin Microbiol Infect Dis 33:1781–1783

    Article  PubMed  Google Scholar 

  11. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193

    Article  CAS  PubMed  Google Scholar 

  12. Dridi B, Raoult D, Drancourt M (2012) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. APMIS 120:85–91

    Article  CAS  PubMed  Google Scholar 

  13. Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 4, e7063

    Article  PubMed  PubMed Central  Google Scholar 

  14. Debets-Ossenkopp YJ, Herscheid AJ, Pot RGJ, Kuipers EJ, Kusters JG, Vandenbroucke-Grauls CMJE (1999) Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxycillin, tetracycline and trovafloxacin in The Netherlands. J Antimicrob Chemother 43:511–515

    Article  CAS  PubMed  Google Scholar 

  15. van Zwet AA, de Boer WA, Schneeberger PM, Weel J, Jansz AR, Thijs JC (1996) Prevalence of primary Helicobacter pylori resistance to metronidazole and clarithromycin in The Netherlands. Eur J Clin Microbiol Infect Dis 15:861–864

    Article  PubMed  Google Scholar 

  16. Khelaifia S, Brunel JM, Raoult D, Drancourt M (2013) Hydrophobicity of imidazole derivatives correlates with improved activity against human methanogenic archaea. Int J Antimicrob Agents 41:544–547

    Article  CAS  PubMed  Google Scholar 

  17. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  18. Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182:126–137

    Article  CAS  PubMed  Google Scholar 

  19. Horz HP, Conrads G (2011) Methanogenic archaea and oral infections—ways to unravel the black box. J Oral Microbiol 3:10

    Article  PubMed Central  Google Scholar 

  20. Huynh HTT, Pignoly M, Nkamga VD, Drancourt M, Aboudharam G (2015) The repertoire of archaea cultivated from severe periodontitis. PLoS ONE 10, e0121565

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nkamga VD, Huynh HT, Aboudharam G, Ruimy R, Drancourt M (2015) Diversity of human-associated Methanobrevibacter smithii isolates revealed by multispacer sequence typing. Curr Microbiol 70:810–815

    Article  CAS  PubMed  Google Scholar 

  22. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dridi B, Raoult D, Drancourt M (2011) Archaea as emerging organisms in complex human microbiomes. Anaerobe 17:56–63

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raoult.

Ethics declarations

Funding information

This work was funded by Fondation Méditerranée Infection.

Transparency declaration

SK, MD, and DR are co-inventors of a patent ref. No.: 1H52437 cas 32fr on the use of the three antioxidants herein reported to cultivate anaerobic bacteria and methanogenic archaea aerobically.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The reduction of the culture medium by antioxidants; Resazurin was used as a redox indicator (Resazurin has a pink color and becomes transparent in the absence of oxygen). A: culture media at T0. B: culture media after 24-h incubation. 1: negative control without antioxidants. 2: culture medium supplemented by adding 1 g/L of ascorbic acid, 0.1 g/L of uric acid and 0.1 g/L of glutathione. 3: culture medium under anaerobic atmosphere. Culture medium supplemented by the addition of the three antioxidants has become clear (as anaerobic tube) indicating the removal of oxygen after 24 h incubation at 37 °C under aerobic conditions. Culture medium without antioxidants retained its pink color indicating the presence of oxygen. (GIF 106 kb)

High Resolution (TIF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelaifia, S., Lagier, JC., Nkamga, V.D. et al. Aerobic culture of methanogenic archaea without an external source of hydrogen. Eur J Clin Microbiol Infect Dis 35, 985–991 (2016). https://doi.org/10.1007/s10096-016-2627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2627-7

Keywords

Navigation