Skip to main content

Advertisement

Log in

Evaluation of various cytokines elicited during antigen-specific recall as potential risk indicators for the differential development of leprosy

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Leprosy is a dermato-neurological disease caused by Mycobacterium leprae infection that manifests across a wide range of clinical and immunological outcomes. Diagnosis is still currently based on clinical manifestations and simple tests are needed. This study investigated whether biomarkers induced by defined M. leprae proteins in 24-h whole blood assays (WBA) could discriminate active leprosy patients from at-risk contacts. Newly diagnosed, untreated paucibacillary (PB; tuberculoid leprosy/borderline tuberculoid [TT/BT]) and multibacillary (MB; borderline lepromatous/lepromatous leprosy [BL/LL]) leprosy patients, as well as healthy household contacts (HHC) of MB patients, were recruited in central western Brazil (Goiânia/Goiás). Cell-based responses to the ML0276, ML1623, ML0405, ML1632, 92f, and ML1011 antigens were measured by Luminex 14-plex assays detecting eotaxin, IFNγ, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-15, IL-17A, IL-23, IL-31, IP-10, and TNFα. Our data reinforce that IFNγ is currently the best indicator of the antigen-specific cellular immune response of TT/BT leprosy and demonstrate that the same antigens promote the secretion of IL-4 in blood from BL/LL leprosy patients. While none of the biomarkers tested could discriminate leprosy patients from HHC, our data indicate that, although most HHC antigen-specific responses are qualitatively similar to TT/BT patients, some HHC can respond similarly to BL/LL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BB:

Borderline borderline

BI:

Bacilloscopic index

BL:

Borderline lepromatous

BT:

Borderline tuberculoid

HHC:

Healthy household contacts

IGRA:

IFNγ release assays

IQR:

Interquartile range

LL:

Lepromatous leprosy

MB:

Multibacillary

MDT:

Multi-drug therapy

PB:

Paucibacillary

TB:

Tuberculosis

TT:

Tuberculoid leprosy

References

  1. Scollard DM (2008) The biology of nerve injury in leprosy. Lepr Rev 79(3):242–253

    PubMed  Google Scholar 

  2. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL (2006) The continuing challenges of leprosy. Clin Microbiol Rev 19(2):338–381

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organization (WHO) (2009) Global leprosy situation, 2009. Wkly Epidemiol Rec 84(33):333–340

    Google Scholar 

  4. Duthie MS, Goto W, Ireton GC, Reece ST, Cardoso LP, Martelli CM, Stefani MM, Nakatani M, de Jesus RC, Netto EM, Balagon MV, Tan E, Gelber RH, Maeda Y, Makino M, Hoft D, Reed SG (2007) Use of protein antigens for early serological diagnosis of leprosy. Clin Vaccine Immunol 14(11):1400–1408

    Article  PubMed  CAS  Google Scholar 

  5. Duthie MS, Ireton GC, Kanaujia GV, Goto W, Liang H, Bhatia A, Busceti JM, Macdonald M, Neupane KD, Ranjit C, Sapkota BR, Balagon M, Esfandiari J, Carter D, Reed SG (2008) Selection of antigens and development of prototype tests for point-of-care leprosy diagnosis. Clin Vaccine Immunol 15(10):1590–1597

    Article  PubMed  CAS  Google Scholar 

  6. Oskam L, Slim E, Bührer-Sékula S (2003) Serology: recent developments, strengths, limitations and prospects: a state of the art overview. Lepr Rev 74(3):196–205

    PubMed  Google Scholar 

  7. Dockrell HM, Black GF, Weir RE, Fine PE (2000) Whole blood assays for interferon-gamma: practicalities and potential for use as diagnostic tests in the field. Lepr Rev 71(Suppl):S60–S62

    PubMed  Google Scholar 

  8. Aráoz R, Honoré N, Banu S, Demangel C, Cissoko Y, Arama C, Uddin MK, Hadi SK, Monot M, Cho SN, Ji B, Brennan PJ, Sow S, Cole ST (2006) Towards an immunodiagnostic test for leprosy. Microbes Infect 8(8):2270–2276

    Article  PubMed  Google Scholar 

  9. Dockrell HM, Brahmbhatt S, Robertson BD, Britton S, Fruth U, Gebre N, Hunegnaw M, Hussain R, Manadhar R, Murrillo L, Pessolani MC, Roche P, Salgado JL, Sampaio E, Shahid F, Thole JE, Young DB (2000) Diagnostic assays for leprosy based on T-cell epitopes. Lepr Rev 71(Suppl):S55–S58; discussion S58–S59

    PubMed  Google Scholar 

  10. Keeler E, Perkins MD, Small P, Hanson C, Reed S, Cunningham J, Aledort JE, Hillborne L, Rafael ME, Girosi F, Dye C (2006) Reducing the global burden of tuberculosis: the contribution of improved diagnostics. Nature 444(Suppl 1):49–57

    Article  PubMed  Google Scholar 

  11. Nyendak MR, Lewinsohn DA, Lewinsohn DM (2009) New diagnostic methods for tuberculosis. Curr Opin Infect Dis 22(2):174–182

    Article  PubMed  Google Scholar 

  12. Connell TG, Rangaka MX, Curtis N, Wilkinson RJ (2006) QuantiFERON-TB Gold: state of the art for the diagnosis of tuberculosis infection? Expert Rev Mol Diagn 6(5):663–677

    Article  PubMed  CAS  Google Scholar 

  13. Menzies D, Pai M, Comstock G (2007) Meta-analysis: new tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann Intern Med 146(5):340–354

    PubMed  Google Scholar 

  14. Pai M, Zwerling A, Menzies D (2008) Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 149(3):177–184

    PubMed  Google Scholar 

  15. van Zyl-Smit RN, Zwerling A, Dheda K, Pai M (2009) Within-subject variability of interferon-g assay results for tuberculosis and boosting effect of tuberculin skin testing: a systematic review. PLoS One 4(12):e8517

    Article  PubMed  Google Scholar 

  16. Mazurek GH, Villarino ME (2003) Guidelines for using the QuantiFERON-TB test for diagnosing latent Mycobacterium tuberculosis infection. Centers for Disease Control and Prevention. MMWR Recomm Rep 52(RR-2):15–18

    PubMed  Google Scholar 

  17. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409(6823):1007–1011

    Article  PubMed  CAS  Google Scholar 

  18. Spencer JS, Dockrell HM, Kim HJ, Marques MA, Williams DL, Martins MV, Martins ML, Lima MC, Sarno EN, Pereira GM, Matos H, Fonseca LS, Sampaio EP, Ottenhoff TH, Geluk A, Cho SN, Stoker NG, Cole ST, Brennan PJ, Pessolani MC (2005) Identification of specific proteins and peptides in Mycobacterium leprae suitable for the selective diagnosis of leprosy. J Immunol 175(12):7930–7938

    PubMed  CAS  Google Scholar 

  19. Geluk A, Klein MR, Franken KL, van Meijgaarden KE, Wieles B, Pereira KC, Bührer-Sékula S, Klatser PR, Brennan PJ, Spencer JS, Williams DL, Pessolani MC, Sampaio EP, Ottenhoff TH (2005) Postgenomic approach to identify novel Mycobacterium leprae antigens with potential to improve immunodiagnosis of infection. Infect Immun 73(9):5636–5644

    Article  PubMed  CAS  Google Scholar 

  20. Geluk A, Spencer JS, Bobosha K, Pessolani MC, Pereira GM, Banu S, Honoré N, Reece ST, MacDonald M, Sapkota BR, Ranjit C, Franken KL, Zewdie M, Aseffa A, Hussain R, Stefani MM, Cho SN, Oskam L, Brennan PJ, Dockrell HM; IDEAL Consortium (2009) From genome-based in silico predictions to ex vivo verification of leprosy diagnosis. Clin Vaccine Immunol 16(3):352–359

    Article  PubMed  CAS  Google Scholar 

  21. Aráoz R, Honoré N, Cho S, Kim JP, Cho SN, Monot M, Demangel C, Brennan PJ, Cole ST (2006) Antigen discovery: a postgenomic approach to leprosy diagnosis. Infect Immun 74(1):175–182

    Article  PubMed  Google Scholar 

  22. Duthie MS, Goto W, Ireton GC, Reece ST, Sampaio LH, Grassi AB, Sousa AL, Martelli CM, Stefani MM, Reed SG (2008) Antigen-specific T-cell responses of leprosy patients. Clin Vaccine Immunol 15(11):1659–1665

    Article  PubMed  CAS  Google Scholar 

  23. Sampaio LH, Stefani MM, Oliveira RM, Sousa AL, Ireton GC, Reed SG, Duthie MS (2011) Immunologically reactive M. leprae antigens with relevance to diagnosis and vaccine development. BMC Infect Dis 11(1):26

    Article  PubMed  CAS  Google Scholar 

  24. Geluk A, van der Ploeg J, Teles RO, Franken KL, Prins C, Drijfhout JW, Sarno EN, Sampaio EP, Ottenhoff TH (2008) Rational combination of peptides derived from different Mycobacterium leprae proteins improves sensitivity for immunodiagnosis of M. leprae infection. Clin Vaccine Immunol 15(3):522–533

    Article  PubMed  CAS  Google Scholar 

  25. Stefani MM, Guerra JG, Sousa AL, Costa MB, Oliveira ML, Martelli CT, Scollard DM (2009) Potential plasma markers of Type 1 and Type 2 leprosy reactions: a preliminary report. BMC Infect Dis 9(1):75

    Article  PubMed  Google Scholar 

  26. Geluk A, van der Ploeg-van Schip JJ, van Meijgaarden KE, Commandeur S, Drijfhout JW, Benckhuijsen WE, Franken KL, Naafs B, Ottenhoff TH (2010) Enhancing sensitivity of detection of immune responses to Mycobacterium leprae peptides in whole-blood assays. Clin Vaccine Immunol 17(6):993–1004

    Article  PubMed  CAS  Google Scholar 

  27. Ridley DS, Jopling WH (1966) Classification of leprosy according to immunity. a five-group system. Int J Lepr Other Mycobact Dis 34(3):255–273

    PubMed  CAS  Google Scholar 

  28. Fine PE, Sterne JA, Pönnighaus JM, Bliss L, Saui J, Chihana A, Munthali M, Warndorff DK (1997) Household and dwelling contact as risk factors for leprosy in northern Malawi. Am J Epidemiol 146(1):91–102

    Article  PubMed  CAS  Google Scholar 

  29. Bakker MI, Hatta M, Kwenang A, Van Mosseveld P, Faber WR, Klatser PR, Oskam L (2006) Risk factors for developing leprosy—a population-based cohort study in Indonesia. Lepr Rev 77(1):48–61

    PubMed  Google Scholar 

  30. Goulart IM, Bernardes Souza DO, Marques CR, Pimenta VL, Gonçalves MA, Goulart LR (2008) Risk and protective factors for leprosy development determined by epidemiological surveillance of household contacts. Clin Vaccine Immunol 15(1):101–105

    Article  PubMed  CAS  Google Scholar 

  31. De Rojas V, Hernández O, Gil R (1994) Some factors influencing delay in leprosy diagnosis. Bull Pan Am Health Organ 28(2):156–162

    PubMed  Google Scholar 

  32. Chen XS, Li WZ, Jiang C, Ye GY (2000) Leprosy in China: delay in the detection of cases. Ann Trop Med Parasitol 94(2):181–188

    Article  PubMed  CAS  Google Scholar 

  33. Deps PD, Guedes BV, Bucker Filho J, Andreatta MK, Marcari RS, Rodrigues LC (2006) Delay in the diagnosis of leprosy in the metropolitan region of Vitória, Brazil. Lepr Rev 77(1):41–47

    PubMed  Google Scholar 

  34. Van Veen NH, Meima A, Richardus JH (2006) The relationship between detection delay and impairment in leprosy control: a comparison of patient cohorts from Bangladesh and Ethiopia. Lepr Rev 77(4):356–365

    PubMed  Google Scholar 

  35. Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, Modlin RL (1991) Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254(5029):277–279

    Article  PubMed  CAS  Google Scholar 

  36. Sieling PA, Modlin RL (1994) Cytokine patterns at the site of mycobacterial infection. Immunobiology 191(4–5):378–387

    Article  PubMed  CAS  Google Scholar 

  37. Misra N, Murtaza A, Walker B, Narayan NP, Misra RS, Ramesh V, Singh S, Colston MJ, Nath I (1995) Cytokine profile of circulating T cells of leprosy patients reflects both indiscriminate and polarized T-helper subsets: T-helper phenotype is stable and uninfluenced by related antigens of Mycobacterium leprae. Immunology 86(1):97–103

    PubMed  CAS  Google Scholar 

  38. Britton WJ, Hellqvist L, Garsia RJ, Basten A (1987) Dominant cell wall proteins of Mycobacterium leprae recognized by monoclonal antibodies. Clin Exp Immunol 67(1):31–42

    PubMed  CAS  Google Scholar 

  39. Molloy A, Gaudernack G, Levis WR, Cohn ZA, Kaplan G (1990) Suppression of T-cell proliferation by Mycobacterium leprae and its products: the role of lipopolysaccharide. Proc Natl Acad Sci USA 87(3):973–977

    Article  PubMed  CAS  Google Scholar 

  40. Teles RM, Krutzik SR, Ochoa MT, Oliveira RB, Sarno EN, Modlin RL (2010) Interleukin-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy. Infect Immun 78(11):4634–4643

    Article  PubMed  CAS  Google Scholar 

  41. Mira MT, Alcaïs A, Nguyen VT, Moraes MO, Di Flumeri C, Vu HT, Mai CP, Nguyen TH, Nguyen NB, Pham XK, Sarno EN, Alter A, Montpetit A, Moraes ME, Moraes JR, Doré C, Gallant CJ, Lepage P, Verner A, Van De Vosse E, Hudson TJ, Abel L, Schurr E (2004) Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427(6975):636–640

    Article  PubMed  CAS  Google Scholar 

  42. da Silva SA, Mazini PS, Reis PG, Sell AM, Tsuneto LT, Peixoto PR, Visentainer JE (2009) HLA-DR and HLA-DQ alleles in patients from the south of Brazil: Markers for leprosy susceptibility and resistance. BMC Infect Dis 9:134

    Article  PubMed  Google Scholar 

  43. Cardoso CC, Pereira AC, de Sales Marques C, Moraes MO (2011) Leprosy susceptibility: genetic variations regulate innate and adaptive immunity, and disease outcome. Future Microbiol 6(5):533–549

    Article  PubMed  CAS  Google Scholar 

  44. Liao W, Schones DE, Oh J, Cui Y, Cui K, Roh TY, Zhao K, Leonard WJ (2008) Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol 9(11):1288–1296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted with support from the American Leprosy Missions, The Heiser Program for Research in Leprosy and Tuberculosis of The New York Community Trust, and the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR). The researchers are members of the IDEAL (Initiative for Diagnostic and Epidemiological Assays for Leprosy) Consortium. L. H. Sampaio was supported by a scholarship awarded by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES); M. M. A. Stefani is the recipient of a fellowship from the National Council of Technological and Scientific Development (CNPq, Brazil) (grant# 304869/2008-2). The authors are grateful to the patients and staff of the Centro de Referência em Diagnóstico e Terapêutica, Goiânia/Goiás, for their cooperation and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. A. Stefani or M. S. Duthie.

Additional information

Mariane M. A. Stefani and Malcolm S. Duthie share the senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Antigen-specific cytokine responses of leprosy patients and contacts. Blood from newly diagnosed leprosy patients (paucibacillary [PB] and multibacillary [MB]) and healthy household contacts (HHC) was incubated with recombinant antigen for 24 h, and then the plasma was removed. The concentration of analyte in each plasma sample was determined by the Luminex assay. The results are presented as individual points, with the black line within each plot indicating the median value, n = 10 per group (PPT 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampaio, L.H., Sousa, A.L.M., Barcelos, M.C. et al. Evaluation of various cytokines elicited during antigen-specific recall as potential risk indicators for the differential development of leprosy. Eur J Clin Microbiol Infect Dis 31, 1443–1451 (2012). https://doi.org/10.1007/s10096-011-1462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1462-0

Keywords

Navigation