Skip to main content
Log in

Experimental study on drying characteristics of pomegranate peels

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Drying kinetics of pomegranate peels has been experimentally investigated in a cabinet dryer. Drying experiments were performed at constant air velocity of 2.0 m/s and initial thickness of 2.8 cm for pomegranate peels, and 3 drying air temperatures of 50, 60, and 70°C. The drying time decreased with increase in drying air temperature. Experimental data were fitted to 10 mathematical models. The fit quality of models on experimental data were evaluated using 3 statistical tests, coefficient of determination, reduced chi-square, and root mean square error. The statistical analysis concluded that the best model in terms of fitting performance was the Midilli et al. model. The effective diffusivity varied from 4.02 to 5.31×10−9m2/s over temperature range. Temperature dependence of the diffusivity was well documented by Arrhenius-type relationship. The activation energy was found to be 12.72 kJ/mol for pomegranate peels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tehranifar A, Zarei M, Nemati Z, Esfandiyari B, Vazifeshenas MR. Investigation of physico-chemical properties and antioxidant activity of twenty Iranian pomegranate (Punica granatum L.) cultivars. Sci. Hortic. -Amsterdam 126: 180–185 (2010)

    Article  CAS  Google Scholar 

  2. Tezcan F, Gultekin-Ozguven M, Diken T, Ozcelik B, Erim FD. Antioxidant activity and total phenolic, organic acid, and sugar content in commercial pomegranate juices. Food Chem. 115: 873–877 (2009)

    Article  CAS  Google Scholar 

  3. Faria A, Calhau C. Pomegranate in human health: An overview. pp. 551–563. In: Bioactive Foods in Promoting Health: Fruits and Vegetables. Watson RR, Preedy VR (eds). Academic Press, Amsterdam, Netherlands (2010)

    Chapter  Google Scholar 

  4. Al-Zoreky NS. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 134: 244–248 (2009)

    Article  CAS  Google Scholar 

  5. Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 96: 254–260 (2006)

    Article  CAS  Google Scholar 

  6. Singh RP, Murthy KNC, Jayaprakasha GK. Studies on the antioxidant activity of pomegranate peel and seed extracts using in vitro models. J. Agr. Food Chem. 50: 81–86 (2002)

    Article  CAS  Google Scholar 

  7. Lopez A, Iguaz A, Esnoz A, Virseda P. Thin layer drying behaviour of vegetable wastes from wholesale market. Dry. Technol. 18: 995–1006 (2006)

    Article  Google Scholar 

  8. Wang Z, Sun J, Liao X, Chen F, Zhao G, Wu J, Hu X. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40: 39–46 (2007)

    Article  CAS  Google Scholar 

  9. Sun J, Hu X, Zhao G, Wu J, Wang Z, Chen F, Liao X. Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Sci. Technol. Int. 13: 91–97 (2007)

    Article  Google Scholar 

  10. Freire F, Figueiredo A, Ferrão P. Modeling high temperature, thin layer, drying kinetics of olive bagasse. J. Agr. Eng. Res. 78: 397–406 (2001)

    Article  Google Scholar 

  11. Jumah R, Al-Kteimat E, Al-Hamad A, Telfah E. Constant and intermittent drying characteristics of olive cake. Dry. Technol. 25: 1421–1426 (2007)

    Article  Google Scholar 

  12. Meziane S. Drying kinetics of olive pomace in a fluidized bed dryer. Energ. Convers. Manage. 52: 1644–1649 (2011)

    Article  Google Scholar 

  13. Ruiz Celma A, López-Rodríguez F, Cuadros Blázquez F. Experimental modeling of infrared drying of industrial grape byproducts. Food Bioprod. Process. 87: 247–253 (2009)

    Article  Google Scholar 

  14. Kaur D, Wani AA, Sogi DS, Shivhare US. Sorption isotherms and drying characteristics of tomato peel isolated from tomato pomace. Dry. Technol. 24: 1515–1520 (2006)

    Article  CAS  Google Scholar 

  15. Al-Muhtasab AH, Harahsheh M, Hararah M, Magee TRA. Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pre-treatment. Ind. Crop. Prod. 31: 171–177 (2010)

    Article  Google Scholar 

  16. AOAC. Official Methods of Analysis. 15th ed. Method 934.06. Association of Official Analytical Chemists, Arlington, VA, USA (1990)

    Google Scholar 

  17. Doymaz I. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst. Eng. 89: 281–287 (2004)

    Article  Google Scholar 

  18. Kingsly ARP, Singh DB. Drying kinetics of pomegranate arils. J. Food Eng. 79: 741–744 (2007)

    Article  Google Scholar 

  19. Movagharnejad K, Nikzad M. Modeling of tomato drying using artificial neural network. Comput. Electr. Agric. 59: 78–85 (2007)

    Article  Google Scholar 

  20. Roberts JS, Kidd DR, Padilla-Zakour O. Drying kinetics of grape seeds. J. Food Eng. 89: 460–465 (2008)

    Article  Google Scholar 

  21. Erbay Z, Icier F. Thin-layer drying behaviours of olive leaves (Olea Europaea L.). J. Food Process Eng. 33: 287–308 (2010)

    Article  Google Scholar 

  22. Zielinska M, Markowski M. Air drying characteristics and moisture diffusivity of carrots. Chem. Eng. Process. 49: 212–218 (2010)

    CAS  Google Scholar 

  23. Sharaf-Eldeen O, Blaisdell YI, Spagna G. A model for ear corn drying. Trans. ASAE 23: 1261–1271 (1980)

    Google Scholar 

  24. Zomorodian A, Moradi M. Mathematical modeling of forced convection thin layer solar drying for Cuminum cyminum. J. Agr. Sci. Technol. 12: 401–408 (2010)

    Google Scholar 

  25. Akpinar EK. Mathematical modeling of thin layer drying process under open sun of some aromatic plants. J. Food Eng. 77: 864–870 (2006)

    Article  Google Scholar 

  26. Ojediran JO, Raji AO. Thin layer drying of millet and effect of temperature on drying characteristics. Int. Food Res. J. 17: 1095–1106 (2010)

    Google Scholar 

  27. Ertekin C, Yaldiz O. Thin layer drying of sliced squash by forced convection. XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR), June 13–17, Quebec, Canada (2010)

  28. Demir K, Sacilik K. Solar drying of Ayaş tomato using a natural convection solar tunnel dryer. J. Food Agric. Environ. 8: 7–12 (2010)

    Google Scholar 

  29. Bal LM, Kar A, Satya S, Naik SN. Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. Int. J. Food Sci. Tech. 45: 2321–2328 (2010)

    Article  CAS  Google Scholar 

  30. Lee JH, Kim HJ. Modeling for vacuum drying characteristics of onion slices. Food Sci. Biotechnol. 18: 1293–1297 (2009)

    Google Scholar 

  31. Vega-Gálvez A, Andrés A, Gonzalez E, Notte-Cuello E, Chacana M, Lemus-Mondaca R. Mathematical modeling on the drying process of yellow squat lobster (Cervimunida jhoni) fishery waste for animal feed. Anim. Feed Sci. Tech. 151: 268–279 (2009)

    Article  Google Scholar 

  32. Crank J. Diffusion in a plane sheet. pp. 43–61. In: The Mathematics of Diffusion. Clarendon Press, Inc., Oxford, London, UK (1975)

    Google Scholar 

  33. Aghbashlo M, Kianmehr MH, Arabhosseini A. Modeling of thinlayer drying of apple slices in a semi-industrial continuous band dryer. Int. J. Food Eng. 6(4): Article 1 (2010)

    Google Scholar 

  34. Lee G, Kang WS, Hsieh F. Thin-layer drying characteristics of chicory root slices. Trans. ASAE 47: 1619–1624 (2004)

    Google Scholar 

  35. Ruiz Celma A, Cuadros Blázquez F, López-Rodríguez F. Experimental characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 87: 282–291 (2009)

    Article  Google Scholar 

  36. Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 14: 2225–2253 (1996)

    Article  CAS  Google Scholar 

  37. Vega-Gálvez A, Miranda M, Dóaz LP, Lopez L, Rodriguez K, Di Scala K. Effective moisture diffusivity determination and mathematical modeling of the drying curves of the olive-waste cake. Bioresource Technol. 101: 7265–7270 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Doymaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doymaz, İ. Experimental study on drying characteristics of pomegranate peels. Food Sci Biotechnol 20, 965–970 (2011). https://doi.org/10.1007/s10068-011-0133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0133-3

Keywords

Navigation