Skip to main content
Log in

A device for the measurement of the horizontal to vertical stress ratio in powders

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A new experimental device for the measurement of the hzorizontal to vertical stress ratio was developed. The tester is designed to conduct the required measurements using a single standard load cell without the need to apply strain gauges on custom built parts. Three different procedures were tested with free-flowing incompressible powders to determine the most precise procedure. This optimal procedure included the preliminary twisting of the cell lid to pre-shear the sample and was modified to conduct experiments with cohesive compressible powders. The results obtained from the best procedure were compared with those from commonly used estimating equations for the horizontal to vertical stress ratio as a function of the angle of internal friction. The obtained results were consistent with the Koenen equation (Koenen in Centralblatt der Bauverwaltung 16:446–449, 1896) for free-flowing materials and with the DIN 1055 equation (DIN 1055 Teil 6, Lastannahmen für Bauten, Lasten in Silozellen, 1987) for cohesive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(C\) :

Cohesion, Pa

\(d_{32}\) :

Sauter mean particle diameter, m

\(d_{50}\) :

Median distribution of the particle diameter, m

\(D_{\mathrm{c}}\) :

Cell diameter, m

\(F_{\mathrm{h}}\) :

Horizontal force, N

\(g\) :

Acceleration due to gravity, m \(\text{ s }^{-2}\)

\(H_{\mathrm{s}}\) :

Sample height, m

\(K\) :

Horizontal to vertical stress ratio

\(K_{\mathrm{a}}\) :

Horizontal to vertical stress ratio in the active state

\(K_{\mathrm{p}}\) :

Horizontal to vertical stress ratio in the passive state

\(m_{\mathrm{v}}\) :

Applied load mass, kg

\(N_{\mathrm{t}}\) :

Number of twists

\(\delta \) :

Effective angle of internal friction, deg

\(\delta _{\infty }\) :

Asymptotic value at the high consolidation of \(\delta \), deg

\(\phi _{\mathrm{i}}\) :

Angle of internal friction, deg

\(\rho _{\mathrm{b}}\) :

Bulk density of the powder, kg \(\text{ m }^{-3}\)

\(\rho _{\mathrm{ba}}\) :

Bulk density of the poured powder, kg \(\text{ m }^{-3}\)

\(\sigma _{\mathrm{h}}\) :

Horizontal stress, Pa

\(\sigma _{\mathrm{v}}\) :

Vertical stress, Pa

References

  1. Eurocode 1, Basis of design and actions on structures. Part 4. Actions in silos and tanks. DD ENV 1991–4 (1996)

  2. Janssen, H.A.: Zeitschr. d. Vereines deutscher Ingenieure, 39, 1045–1049 (1895). As reported by Sperl, M.: Experiments on Corn Pressure in Silo Cells - Translation and Comment of Janssen’s Paper from 1895. Granular Matter 8, 59–65 (2006)

    Google Scholar 

  3. Yu, Y., Arnold, P.C.: Theoretical modelling of torque requirements for single screw feeders. Powder Technol. 93, 151–162 (1997)

    Article  Google Scholar 

  4. Tong, H., Li, H., Lu, X., Zheng, Q.: Hydrodynamic modeling of the L-valve. Powder Technol. 129, 8–14 (2003)

    Article  Google Scholar 

  5. Suri, A., Horio, M.: A novel cartridge type powder feeder. Powder Technol. 189, 497–507 (2009)

    Article  Google Scholar 

  6. Dai, J., Grace, J.R.: A model for biomass screw feeding. Powder Technol. 186, 40–55 (2008)

    Article  Google Scholar 

  7. Wang, J., Wen, H., Desai, D.: Lubrication in tablet formulations. Eur. J. Pharm. Biopharm. 75, 1–15 (2010)

    Article  Google Scholar 

  8. Larsson, S.H.: Kinematic wall friction properties of reed canary grass powder at high and low normal stresses. Powder Technol. 198, 108–13 (2010)

    Article  Google Scholar 

  9. Parrella, L., Barletta, D., Boerefijn, R., Poletto, M.: Comparison of uniaxial compaction tester and shear tester for characterization of powder flowability. Kona Powder. Part. J. 26, 178–189 (2008)

    Google Scholar 

  10. Bruni, G., Barletta, D., Poletto, M., Lettieri, P.: A rheological model for the flowability of aerated fine powders. Chem. Eng. Sci. 62, 397–407 (2007a)

    Article  Google Scholar 

  11. Bruni, G., Lettieri, P., Newton, D., Barletta, D.: An investigation of the effect of the interparticle forces on the fluidization behaviour of fine powders linked with rheological studies. Chem. Eng. Sci. 62, 387–396 (2007b)

    Article  Google Scholar 

  12. Landi, G., Barletta, D., Poletto, M.: Modelling and experiments on the effect of air humidity on the flow properties of glass powders. Powder Technol. 207, 437–443 (2011)

    Article  Google Scholar 

  13. Landi, G., Barletta, D., Lettieri, P., Poletto, M.: Flow properties of moisturized powders in a couette fluidized bed rheometer. Int. J. Chem. React. Eng. 10(A28), 1–13 (2012)

    Google Scholar 

  14. Tomasetta, I., Barletta, D., Lettieri, P., Poletto, M.: The measurement of powder flow properties with a mechanically stirred aerated bed. Chem. Eng. Sci. 69, 373–381 (2012)

    Article  Google Scholar 

  15. Kwade, A., Schulze, D., Schwedes, J.: Determination of the stress ratio in uniaxial compression tests-part 1. Powder Handl. Proc. 6, 61–65 (1994a)

    Google Scholar 

  16. Kwade, A., Schulze, D., Schwedes, J.: Determination of the stress ratio in uniaxial compression tests-part 2. Powder Handl. Proc. 6, 199–203 (1994b)

    Google Scholar 

  17. Di Felice, R., Scapinello, C.: On the interaction between a fixed bed of solid material and the confining column wall: the Janssen approach. Granul. Matter 2, 49–55 (2010)

    Article  Google Scholar 

  18. Masroor, S.A., Zachary, L.W., Lohnes, R.A.: A test apparatus for determining elastic constants of bulk solids. In: SEM Spring Conference on Experimental Mechanics, Houston, TX, USA pp. 46–63, (April 1987)

  19. Atewologun, A.O., Riskowski, G.L.: Experimental determination of Janssen’s stress ratio by four methods for soybeans under static conditions. Trans. ASABE 34, 2193–2198 (1991)

    Google Scholar 

  20. Chung, Y.C., Ooi, J.Y.: Confined compression and rod penetration of a dense granular medium: discrete element modelling and validation. In: Wu, W., Yu, H.S. (eds.) Modern Trends in Geomechanics Springer Proceedings in Physics, vol. 106, pp. 223–239. Springer, Berlin (2006)

    Chapter  Google Scholar 

  21. Chung, Y.C., Ooi, J.Y.: Influence of discrete element model parameters on bulk behavior of a granular solid under confined compression. Part. Sci. Technol. 26, 83–96 (2008)

    Article  Google Scholar 

  22. Chou, P.S.: Mechanical response of granular solid under confined compression. National Central University (Taiwan), Master Thesis in Mechanical Engineering (2011)

  23. Wiącek, J., Molenda, M., Horabik, J., Ooi, J.Y.: Influence of grain shape and intergranular friction on material behavior in uniaxial compression: experimental and DEM modelling. Powder Technol. 217, 435–442 (2012)

    Google Scholar 

  24. Horabik, J., Molenda, M.: Device for determination of pressure ratio of granular materials (in Polish). Patent Application No. P-340014, Bulletin of Patent, Office No. 22(700), A1(21) 340017 (2000)

  25. Horabik, J., Rusinek, R.: Pressure ratio of cereal grains determined in a uniaxial compression test. Int. Agrophys. 16, 23–28 (2002)

    Google Scholar 

  26. Koenen, M.: Berechnung des Seiten- und Bodendrucks in Silozellen. Centralblatt der Bauverwaltung 16, 446–449 (1896)

    Google Scholar 

  27. Rotter, M.: Silo and hopper design for strength. In: McGlinchey, D. (ed.) Bulk Solids Handling: Equipment Selection and Operation, pp. 99–134. Blackwell Publishing Ltd, Oxford (2008)

    Chapter  Google Scholar 

  28. Jaky, J.: State of stress at great depth. In: Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, Holland 1, 103–107 (1948)

  29. Cowin, S.C.: The theory of static loads in bins. J. Appl. Mech. 44(3), 409–412 (1977)

    Article  ADS  Google Scholar 

  30. Drescher, A.: Analytical Methods in Bin-load Analysis. Elsevier, Amsterdam (1991)

    Google Scholar 

  31. Mayne, P.W., Kulhawy, F.H.: Ko-OCR relationships in soil. J. Geotech. Eng. Div. 108(6), 851–872 (1982)

    Google Scholar 

  32. Robertson, P.K.: Interpretation of cone penetration tests—a unified approach. Canad. Geotech. J. 46, 1337–1355 (2009)

    Article  Google Scholar 

  33. DIN 1055 Teil 6, Lastannahmen für Bauten, Lasten in Silozellen (1987)

  34. DIN 1055–6, Einwirkungen auf Tragwerke, Teil 6: Einwirkungenauf Silos und Flüssigkeitsbehälter (2005)

  35. Takenaka, K., Iimura, K., Suzuki, M., Hirota, M.: Shape effects of the yield locus on the rankine coefficient. Adv. Powder Technol. 19, 25–37 (2008)

    Article  Google Scholar 

  36. Thornton, C., Zhang, L.: Numerical simulations of the direct shear test. Chem. Eng. Technol. 26, 153–156 (2003)

    Article  Google Scholar 

  37. Zhang, L., Thornton, C.: A numerical examination of the direct shear test. Geotechnique 57, 343–354 (2007)

    Article  Google Scholar 

  38. Schulze, D.: A new ring shear tester for flowability and time consolidation measurements. In: Proceedings 1st International Particle Technology Forum, August 1994, Denver, Colorado, USA, pp. 11–16 (1994)

  39. Jenike, A.W.: Gravity flow of bulk solids. University of Utah. Utah Engineering. Experiment Station, Bulletin 108 (1961)

  40. Standard shear testing technique for particulate solids using the Jenike shear cell. The Institution of Chemical Engineers. Rugby, UK (1989)

  41. Ittershagen, T., Kwade, A.: Measurement of anisotropic consolidation behavior. Particul. Sci. Technol. 29, 79–88 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Domenico Pisano and Valentina Nappo for their help with executing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Poletto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletta, D., Poletto, M. A device for the measurement of the horizontal to vertical stress ratio in powders. Granular Matter 15, 487–497 (2013). https://doi.org/10.1007/s10035-013-0427-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0427-7

Keywords

Navigation