Skip to main content
Log in

Collisional rates for the inelastic Maxwell model: application to the divergence of anisotropic high-order velocity moments in the homogeneous cooling state

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The collisional rates associated with the isotropic velocity moments \({\langle V^{2r}\rangle}\) and the anisotropic moments \({\langle V^{2r}V_i\rangle}\) and \({\langle V^{2r}(V_iV_j-d^{-1}V^2\delta_{ij})\rangle}\) are exactly derived in the case of the inelastic Maxwell model as functions of the exponent r, the coefficient of restitution α, and the dimensionality d. The results are applied to the evolution of the moments in the homogeneous free cooling state. It is found that, at a given value of α, not only the isotropic moments of a degree higher than a certain value diverge but also the anisotropic moments do. This implies that, while the scaled distribution function has been proven in the literature to converge to the isotropic self-similar solution in well-defined mathematical terms, nonzero initial anisotropic moments do not decay with time. On the other hand, our results show that the ratio between an anisotropic moment and the isotropic moment of the same degree tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds): Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Baldassarri A., MariniBettolo Marconi U., Puglisi A.: Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett. 58, 14–20 (2002)

    Article  ADS  Google Scholar 

  3. Ben-Naim E., Krapivsky P.L.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000)

    Article  ADS  Google Scholar 

  4. Ben-Naim E., Krapivsky P.L.: Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E 66, 011, 309 (2002)

    Article  Google Scholar 

  5. Ben-Naim, E., Krapivsky, P.L.: The inelastic Maxwell model. In: Pöschel, T., Luding, S. (eds.) Granular Gas Dynamics. Lecture Notes in Physics, vol. 624, pp. 65–94. Springer, Berlin (2003)

  6. Bisi M., Carrillo J.A., Toscani G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124, 625–653 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Bobylev A.V., Carrillo J.A., Gamba I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bobylev A.V., Cercignani C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobylev, A.V., Cercignani, C., Gamba, I.M.: Generalized kinetic Maxwell models of granular gases. Lecture Notes in Mathematics, vol. 1937, pp. 23–58. Springer, Berlin (2008)

  10. Bobylev A.V., Cercignani C., Gamba I.M.: On the self-similar asymptotics for generalized non-linear kinetic Maxwell models. Commun. Math. Phys. 291, 599–644 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bobylev A.V., Cercignani C., Toscani G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys. 111, 403–417 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bobylev A.V., Gamba I.M.: Boltzmann equations for mixtures of Maxwell gases: exact solutions and power like tails. J. Stat. Phys. 124, 497–516 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Bolley F., Carrillo J.A.: Tanaka theorem for inelastic Maxwell models. Commun. Math. Phys. 276, 287–314 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Brey J.J., Garcíade Soria M.I., Maynar P.: Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E 82, 021, 303 (2010)

    Google Scholar 

  15. Brilliantov N.V., Pöschel T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  16. Brito R., Ernst M.H.: Anomalous velocity distributions in inelastic Maxwell gases. In: Korutcheva, E., Cuerno, R. (eds) Advances in Condensed Matter and Statistical Mechanics, pp. 177–202. Nova Science Publishers, New York (2004)

    Google Scholar 

  17. Carlen E.A., Carrillo J.A., Carvalho M.C.: Strong convergence towards homogeneous cooling states for dissipative Maxwell models. Ann. I. H. Poincaré – AN 26, 167–1700 (2009)

    MathSciNet  Google Scholar 

  18. Carrillo J.A., Cercignani C., Gamba I.M.: Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E 62, 7700–7707 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  19. Carrillo J.A., Toscani G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma 6, 75–198 (2007)

    MathSciNet  Google Scholar 

  20. Ernst M.H.: Exact solutions of the nonlinear Boltzmann equation. Phys. Rep. 78, 1–171 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ernst M.H., Brito R.: High-energy tails for inelastic Maxwell models. Europhys. Lett. 58, 182–187 (2002)

    Article  ADS  Google Scholar 

  22. Ernst M.H., Brito R.: Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails. J. Stat. Phys. 109, 407–432 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Furioli G., Pulvirenti A., Terraneo E., Toscani G.: Convergence to self-similarity for the Boltzmann equation for strongly inelastic Maxwell molecules. Ann. I. H. Poincaré – AN 27, 719–737 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Garzó V., Santos A.: Third and fourth degree collisional moments for inelastic Maxwell model. J. Phys. A. Math. Theor. 40, 14, 927–14, 943 (2007)

    Google Scholar 

  25. Garzó V., Santos A.: Hydrodynamics of inelastic Maxwell models. Math. Model. Nat. Phenom. 6(4), 37–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krapivsky P.L., Ben-Naim E.: Nontrivial velocity distributions in inelastic gases. J. Phys. A. Math. Gen. 35, L147–L152 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Santos A.: Transport coefficients of d-dimensional inelastic Maxwell models. Physica A. 321, 442–466 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Santos A.: Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Cont. Mech. Thermodyn. 21, 361–387 (2009)

    Article  MATH  Google Scholar 

  29. Truesdell C., Muncaster R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A., Garzó, V. Collisional rates for the inelastic Maxwell model: application to the divergence of anisotropic high-order velocity moments in the homogeneous cooling state. Granular Matter 14, 105–110 (2012). https://doi.org/10.1007/s10035-012-0336-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0336-1

Keywords

Navigation