Skip to main content
Log in

Voltammetric, dynamic light scattering (DLS) and electrophoretic mobility characterization of FeS nanoparticles (NPs) in different electrolyte solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammetric response of FeS nanoparticles (NPs) dispersion based on the oxidation exchange voltammetric peak between Hg electrode and FeS NPs at around −0.45 V was studied in different electrolytes (chloride, acetate, perchlorate). Several experiments were designed to monitor in parallel to voltammetric measurements, physicochemical and surface characteristics of the formed FeS NPs (ζ-potential and size) under same experimental conditions. It was shown that recorded voltammetric peak produced by FeS NPs from bulk solution is changing with electrolyte concentration and composition, as well as observed size and ζ-potential of the studied FeS NPs. Our measurements indicate relationship between measured ζ-potential of FeS NPs dispersions and recorded voltametric peak charge and potential, pointing to a promising potential of voltammetry in characterization of physicochemical and surface chemistry features of metal sulphide NPs in water environment. The best voltammetric response is obtained in presence of small NPs, <100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciglenečki I, Krznarić D, Helz GR (2005) Voltammetry of copper sulfide particles and nanoparticles: investigation of the cluster hypothesis. Environ Sci Technol 39:7492–7498

    Article  Google Scholar 

  2. Bura-Nakić B, Krznarić D, Jurašin D, Helz GR, Ciglenečki I (2007) Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal Chim Acta 594:44–51

    Article  Google Scholar 

  3. Bura-Nakić E, Krznarić D, Helz GR, Ciglenečki I (2011) Characterization of iron sulfide species in model solutions by cyclic voltammetry: revisiting an old problem. Electroanalysis 23:1376–1382

    Article  Google Scholar 

  4. Bura-Nakić B, Viollier E, Ciglenečki I (2013) Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake. Environ Sci Technol 47:741–749

    Article  Google Scholar 

  5. Bura-Nakić B, Viollier E, Jézéquel D, Thiam A, Ciglenečki I (2009) Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif Central, France). Chem Geol 266:320–326

    Google Scholar 

  6. Helz GR, Ciglenečki I, Krznarić D, Bura-Nakić E (2011) In: Tratnyek PG, Grundl TJ, Haderlein SB (eds) Aquatic redox chemistry. ACS Symposium Series, Washington DC. doi:10.1021/bk-2011-1071

    Google Scholar 

  7. Marguš M, Batina N, Ciglenečki I (2014) The development of electrochemical methods for determining nanoparticles in the environment. Part I. Voltammetry and in-situ electrochemical scanning tunnelling microscopy (EC-STM) study of FeS in sodium chloride solutions. Environ Chem 11:181–186

    Article  Google Scholar 

  8. Bura-Nakić E, Marguš M, Milanović I, Jurašin D, Ciglenečki I (2014) The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions. Environ Chem 11:187–195

    Article  Google Scholar 

  9. Krznarić D, Ciglenečki I (2015) Voltammetric study of an FeS layer on a Hg electrode in supersaturated FeS chloride solution. Environ Chem 12:123–129

    Article  Google Scholar 

  10. Buffle J, De Vitre R, Perret D, Leppard GG (1988) Combining field measurements for speciation in non perturbable waters. In: Kramer JR, Allen HE (eds) Metal Speciation: Theory, Analysis, and Application, Lewis Publishers Inc, Chelsea, p 99–124

  11. Davison W, Buffle J, DeVitre R (1998) Voltammetric characterization of a dissolved iron sulphide species by laboratory and field studies. Anal. Chim Acta 377:193–203

    Article  CAS  Google Scholar 

  12. Davison W, Buffle J, De Vitre R (1988) Direct polarographic determination of O2, Fe(II), Mn(II), S(-II) and related species in anoxic waters. Pure App Chem 60:1535–1548

    Article  CAS  Google Scholar 

  13. Delay M, Frimmel FH (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592

    Article  CAS  Google Scholar 

  14. Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48:8946–8962

    Article  CAS  Google Scholar 

  15. Christian P, Von Der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    Article  CAS  Google Scholar 

  16. Kallay N, Zalac S (2002) Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J Colloid Interface Sci 253:70–6

    Article  CAS  Google Scholar 

  17. Widler AM, Seward TM (2002) The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces. Geochim Cosmochim Acta 66:383–402. doi:10.1016/S0016-7037(01)00791-8

    Article  CAS  Google Scholar 

  18. Bebie J, Schoonen MAA, Fuhrmann M, Strongin DR (1998) Surface charge development on transition metal sulfides: an electrokinetic study. Geochim Cosmochim Acta 62:633–642

    Article  CAS  Google Scholar 

  19. Preočanin T, Tuksar M, Kallay N (2007) Mechanism of charging of the pyrite/aqueous interface as deduced from the surface potential measurements. Appl Surf Sci 253:5797–5801

    Article  Google Scholar 

  20. Rickard D (1995) Kinetics of FeS precipitation: part 1. Competing reaction mechanisms. Geochim Cosmochim Acta 59:4367–4379

    Article  CAS  Google Scholar 

  21. Wolthers M, Charlet L, van Der Linde PR, Rickard D, van Der Weijden CH (2005) Surface chemistry of disordered mackinawite (FeS). Geochim Cosmochim Acta 69:3469–3481

    Article  CAS  Google Scholar 

  22. Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197

    Article  CAS  Google Scholar 

  23. Batina N, Ciglenečki I, Ćosović B (1992) Determination of elemental sulphur, sulphide and their mixtures in electrolyte solutions by a.c. voltammetry. Anal Chim Acta 267:157–164

    Article  CAS  Google Scholar 

  24. Ciglenečki I, Ćosović B (1997) Electrochemical determination of thiosulfate in seawater in the presence of elemental sulfur and sulfide. Electroanalysis 9:775–780

    Article  Google Scholar 

  25. Krznarić D, Ciglenečki-Jušić I (2005) Electrochemical processes of sulfide in NaCl electrolyte solutions on mercury electrode. Electroanalysis 17:1317–1324

    Article  Google Scholar 

  26. Milanović I, Krznarić D, Bura-Nakić E, Ciglenečki I (2014) Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions. Environ Chem 11:167–172

    Article  Google Scholar 

  27. Banica FG, Galik M, Švancara I, Vytras K (2009) Electrochemical investigation of metal sulfides at mercury electrodes using thiourea as a source of sulfide ion. Electroanalysis 21:332–341

    Article  CAS  Google Scholar 

  28. Ciglenečki I, Bura-Nakić E, Marguš M (2012) Zinc sulfide surface formation on Hg electrode during cyclic voltammetric scan: an implication for previous and future research studies on metal sulfide systems. J Solid State Electrochem 16:2041–2046

    Article  Google Scholar 

  29. Davison W, Phillips N, Tabner BJ (1999) Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants. Aquat Sci 61:23–43

    Article  CAS  Google Scholar 

  30. Winkler K, Krogulec T (1995) The study of electrode processes of Fe(II)-thiosulphate complexes on mercury electrodes. J Electroanal Chem 386:127–134

    Article  Google Scholar 

  31. Winkler K, Kalinowski S, Krogulec T (1988) A study of the deposition of iron on mercury and glassy carbon electrodes. J Electroanal Chem 252:303–322

    Article  CAS  Google Scholar 

  32. Winkler K, Krogulec T, Galus Z (1985) Formation of FeS and its effect on the Fe(II)/Fe system in thiocyanate solution at mercury electrodes. Electrochim Acta 30:1055–1062

    Article  CAS  Google Scholar 

  33. Loshkarev MA, Kriukova AA, Loshkarev YM, Diachenko TF (1964) Influence of chloride ion on the rate of inhibited electrode processes. Electrochim Acta 9(8):119–1127

    Article  Google Scholar 

  34. Yasui Y, Kitazumi Y, Nishi N, Kakiuchi T (2010) Analysis of equilibrium electrocapillary curves at the interface between hydrophobic ionic liquid, trioctylmethylammonium bis(nonafluorobutanesulfonyl)amide, and aqueous lithium chloride solutions. J Chem Eng Data 55:4463–4466

    Article  CAS  Google Scholar 

  35. Lin D, Ma S, Zhou K, Wu F, Yang K (2015) The effect of water chemistry on homoaggregations of various nanoparticles: specific role of Cl ions. J Colloid Interface Sci 450:272–278

    Article  CAS  Google Scholar 

  36. Krnarić D, Helz GR, Bura-Nakić E, Jurašin D (2008) Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example. Anal Chem 80:742–749

    Article  Google Scholar 

  37. Higashitani K, Kondo M, Hatade SJ (1991) Effect of particle size on coagulation rate of ultrafine colloidal particles. Colloid Interface Sci 142:204–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the UKF grant 62/10 ‘Nanoparticles in aqueous environment: electrochemical, nanogravimetric, STM and AFM studies’, and Croatian Science Foundation project IP-11-2013-1205, SPHERE. Authors thank D.Krznarić, N.Batina and anonymous reviewers for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Ciglenečki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marguš, M., Milanović, I. & Ciglenečki, I. Voltammetric, dynamic light scattering (DLS) and electrophoretic mobility characterization of FeS nanoparticles (NPs) in different electrolyte solutions. J Solid State Electrochem 20, 2981–2989 (2016). https://doi.org/10.1007/s10008-016-3354-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3354-9

Keywords

Navigation