Skip to main content
Log in

Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, copper/nickel (CuNi) particle decorated multiwalled carbon nanotubes (MWCNTs) have been fabricated for nonenzymatic glucose detection by the electrodeposition of CuNi particles on a glassy carbon electrode (GCE) modified with Nafion-functionalized MWCNTs (fMWCNTs). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses reveal that CuNi particles were successfully deposited on the fMWCNTs/GCE. The as-synthesized CuNi/fMWCNT composite reveals the shape characteristics of dendrite with a Cu/Ni atomic ratio of around 88.1/11.9. The nonenzymatic glucose sensor based on CuNi/fMWCNT composite shows excellent electrocatalytic activity toward glucose oxidation with a high sensitivity (1470.2 μA cm−2 mM−1), a low detection limit (2.5 nM, signal/noise (S/N) ratio = 3), and a wide linear range (0.1–5000 μM). Moreover, the sensor has been successfully used for the assay of glucose in human serum samples with good recovery, ranging from 95.6 to 100.1 %. These results indicate that CuNi/fMWCNT composite is an ideal candidate for novel nonenzymatic glucose sensor because of its high sensitivity, good selectivity, good stability, and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang YC, Su L, Manuzzi D, Monteros HVE, Jia WZ, Huo DQ, Hou CJ, Li Y (2012) Ultrasensitive and selective nonenzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432

    Article  CAS  Google Scholar 

  2. Chen J, Zhang ED, Ye JS (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10:1268–1271

    Article  CAS  Google Scholar 

  3. Ndamanisha JC, Guo LP (2009) Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode. Bioelectrochemistry 77:60–63

    Article  CAS  Google Scholar 

  4. Waly MI, Essa MM, Ali A, Al-Shuaibi YM, Al-Farsi YM (2010) The global burden of type 2 diabetes: a review. Int J Biol Med Res 1:326–329

    Google Scholar 

  5. Zhao W, Xu JJ, Shi CG, Chen HJ (2006) Fabrication, characterization and application of gold nano-structured film. Electrochem Commun 8:773–778

    Article  CAS  Google Scholar 

  6. Fanguya JC, Henry CS (2002) Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. Analyst 127:1021–1023

    Article  Google Scholar 

  7. Beden B, Largeaud F, Kokoh KB, Lamy C (1996) Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of glucose: Identification of reactive intermediates and reaction products. Electrochim Acta 41:701–709

    Article  CAS  Google Scholar 

  8. Meng L, Jin J, Yang GX, Lu TH, Zhang H, Cai CX (2009) Nonenzymatic electrochemical detection of glucose based on palladium–single walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280

    Article  CAS  Google Scholar 

  9. Qin XY, Lu WB, Luo YL, Chang GH, Asiri AM, Al-Youbibc AO, Sun XP (2012) Synthesis of Ag nanoparticle-decorated 2,4,6-tris(2-pyridyl)-1,3,5-triazine nanobelts and their application for H2O2 and glucose detection. Analyst 137:939–943

    Article  CAS  Google Scholar 

  10. Holt-Hindle P, Nigro S, Asmussen M, Chen AC (2008) Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem Commun 10:1438–1441

    Article  CAS  Google Scholar 

  11. Wang JP, Thomas DF, Chen AC (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    Article  CAS  Google Scholar 

  12. Cui H, Ye J, Zhang W, Li C, Luong JHT, Sheu F (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183

    Article  CAS  Google Scholar 

  13. Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens Bioelectron 24:3481–3486

    Article  CAS  Google Scholar 

  14. Xiao F, Zhao FQ, Zhang YF, Guo CP, Zeng BZ (2009) Ultrasonic electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors. J Phys Chem C 113:849–855

  15. Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2008) Composition–activity relationships of carbon electrode-supported bimetallic gold–silver nanoparticles in electrocatalytic oxidation of glucose. J Electroanal Chem 615:51–61

    Article  CAS  Google Scholar 

  16. Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    Article  CAS  Google Scholar 

  17. Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223

    Article  CAS  Google Scholar 

  18. Luo LQ, Zhu LM, Wang ZX (2012) Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry 88:156–163

    Article  CAS  Google Scholar 

  19. Guo CY, Zhang X, Huo HH, Xu CL, Han X (2013) Co3O4 microspheres with free-standing nanofibers for high performance nonenzymatic glucose sensor. Analyst 138:6727–6731

  20. Yuan BQ, Xu CY, Deng DH, Xing XY, Liu L, Pang H, Zhang DJ (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Article  CAS  Google Scholar 

  21. Tehrani RMA, Ghani SA (2012) MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor. Biosens Bioelectron 38:278–283

    Article  CAS  Google Scholar 

  22. Ahmad M, Pan C, Luo Z, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114:9308–9313

    Article  CAS  Google Scholar 

  23. Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136:4241–4246

    Article  CAS  Google Scholar 

  24. Tong SF, Xu YH, Zhang ZX, Song WB (2010) Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J Phys Chem C 114:20925–20931

    Article  CAS  Google Scholar 

  25. Arvintea A, Sesay AM, Virtanen V (2011) Carbohydrates electrocatalytic oxidation using CNT–NiCo-oxide modified electrodes. Talanta 84:180–186

    Article  Google Scholar 

  26. Yi Q, Huang W, Yu W, Li L, Liu X (2008) Hydrothermal synthesis of titanium-supported nickel nanoflakes for electrochemical oxidation of glucose. Electroanalysis 20:2016–2022

    Article  CAS  Google Scholar 

  27. Marioli JM, Luo PF, Kuwana T (1993) Nickel–chromium alloy electrode as a carbohydrate detector for liquid chromatography. Anal Chim Acta 282:571–580

    Article  CAS  Google Scholar 

  28. Li XL, Yao JY, Liu FL, He HC, Zhou M, Mao N, Xiao P, Zhang YH (2013) Nickel–chromium alloy electrode as a carbohydrate detector for liquid chromatography. Sensors Actuators B 181:501–508

  29. Hoshino T, Sekiguchi S, Muguruma H (2012) Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry 84:1–5

    Article  CAS  Google Scholar 

  30. Khang DG, Kima SY, Liu-Snyder P, Palmore GTR, Durbinc SM, Webster TJ (2007) Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: Independent role of surface nano-roughness and associated surface energy. Biomaterials 28:4756–4768

  31. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon 44:1034–1047

    Article  CAS  Google Scholar 

  32. Toghill KE, Compton RG (2010) Electrochemical nonenzymatic glucose sensors: A perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    CAS  Google Scholar 

  33. Si P, Huang YJ, Wang TH, Ma JM (2013) Nanomaterials for electrochemical nonenzymatic glucose biosensors. RSC Adv 3:3487–3502

    Article  CAS  Google Scholar 

  34. Kang Q, Yang LX, Cai QY (2008) An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74:62–65

    Article  CAS  Google Scholar 

  35. Babaei A, Taheri AR (2013) Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sensors Actuators B 176:543–551

    Article  CAS  Google Scholar 

  36. Rocha LS, Carapuça HM (2006) Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: Quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Bioelectrochemistry 69:258–266

    Article  CAS  Google Scholar 

  37. Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19:4174–4180

    Article  CAS  Google Scholar 

  38. Wolfart F, Maciel A, Nagata N, Vidotti M (2013) Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. J Solid State Electrochem 17:1333–1338

    Article  CAS  Google Scholar 

  39. Xie YQ, Huber CO (1991) Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal Chem 63:1714–1719

    Article  CAS  Google Scholar 

  40. Wels B, Johnson DC (1990) Electrocatalysis of anodic oxygen transfer reactions: oxidation of cyanide at electrodeposited copper oxide electrodes in alkaline media. J Electrochem Soc 137:2785–2791

    Article  CAS  Google Scholar 

  41. Prabhu SV, Baldwin RP (1989) Constant potential amperometric detection of carbohydrates at a copper-based chemically modified electrode. Anal Chem 61:852–856

    Article  CAS  Google Scholar 

  42. Druska P, Strehblow HH, Golledge S (1996) A surface analytical examination of passive layers on Cu/Ni alloys: Part I. Alkaline solution. Corros Sci 38:835–851

    Article  CAS  Google Scholar 

  43. Luo P, Prabhu SV, Baldwin RP (1990) Constant potential amperometric detection at a copper-based electrode: electrode formation and operation. Anal Chem 62:752–755

    Article  CAS  Google Scholar 

  44. Ding RM, Liu JP, Jiang J, Wu F, Zhu JH, Huang XT (2011) Tailored Ni–Cu alloy hierarchical porous nanowire as a potential efficient catalyst for DMFCs. Catal Sci Technol 1:1406–1411

    Article  CAS  Google Scholar 

  45. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Chem 13:1171–1179

    CAS  Google Scholar 

  46. Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymaticglucose sensor in alkaline media with a copper nanocluster/multiwall carbonnanotube-modified glassy carbon electrode. Anal Biochem 363:143–150

    Article  CAS  Google Scholar 

  47. Yeo IH, Johnson DC (2001) Electrochemical response of small organic molecules at nickel–copper alloy electrodes. J Electroanal Chem 495:110–119

    Article  CAS  Google Scholar 

  48. Turky A (2003) Electrical surface and catalytic properties of NiO as influenced by doping with CuO and Ag2O. Appl Catal A 247:83–93

    Article  CAS  Google Scholar 

  49. Shamsipur M, Najafi M, Hosseini MRM (2010) Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77:120–124

    Article  CAS  Google Scholar 

  50. Qiao NQ, Zheng JB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nano composite composed of nickel hydroxide and graphene. Microchim Acta 177:103–109

    Article  CAS  Google Scholar 

  51. Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:294–2952

    Article  Google Scholar 

  52. Lin KC, Lin YC, Chen SM (2013) A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim Acta 96:164–172

    Article  CAS  Google Scholar 

  53. Ding RM, Liu JP, Jiang J, Zhu JH, Huang XT (2012) Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal Methods 4:4003–4008

Download references

Acknowledgments

Financial support from Program for NSFC (51272219), RFDP (20124301110006), International Joint Research Program of Hunan Province (2013WK3036), Open Project of Hunan Provincial University Innovation Platform (12 K050), and the Construct Program of the Key Discipline in Hunan Province is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, W., Liu, J., Chen, H. et al. Copper/nickel nanoparticle decorated carbon nanotubes for nonenzymatic glucose biosensor. J Solid State Electrochem 19, 1511–1521 (2015). https://doi.org/10.1007/s10008-015-2766-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2766-2

Keywords

Navigation