Skip to main content
Log in

Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Li-rich Li1.3[Ni0.35Mn0.65]O2+x microspheres are firstly prepared and subsequently transferred into the Al2O3-coated Li-rich Li1.3[Ni0.35Mn0.65]O2+x microspheres by a simple deposition method. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. The results reveal that the Al2O3-coated Li-rich Li1.3[Ni0.35Mn0.65]O2+x sample has a typical α-NaFeO2 layered structure with the existence of Li2MnO3-type integrated component, and the Al2O3 layer is uniformly coated on the surface of the spherical Li-rich Li1.3[Ni0.35Mn0.65]O2+x particles with a thickness of about 4 nm. Importantly, the Al2O3-coated Li-rich sample exhibits obviously improved electrochemical performance compared with the pristine one, especially the 2 wt.% Al2O3-coated sample shows the best electrochemical properties, which delivers an initial discharge capacity of 228 mAh g−1 at a rate of 0.1 C in the voltage of 2.0–4.6 V, and the first coulombic efficiency is up to 90 %. Furthermore, the 2 wt.% Al2O3-coated sample represents excellent cycling stability with capacity retention of 90.9 % at 0.33 C after 100 cycles, much higher than that of the pristine one (62.2 %). Particularly, herein, the typical inferior rate capability of Li-rich layered cathode is apparently improved, and the 2 wt.% Al2O3-coated sample also shows a high rate capability, which can deliver a capacity of 101 mAh g−1 even at 10 C. Besides, the thin Al2O3 layer can reduce the charge transfer resistance and stabilize the surface structure of active material during cycling, which is responsible for the improvement of electrochemical performance of the Li-rich Li1.3[Ni0.35Mn0.65]O2+x .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu C, Li GS, Guan XF, Zheng J, Li LP, Chen TW (2012) Composites Li2MnO3 LiMn1/3Ni1/3Co1/3O2: optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures. Electrochim Acta 81:283–291

    Article  CAS  Google Scholar 

  2. Fell CR, Carroll KJ, Chi MF, Meng YS (2010) Synthesis-structure-property relations in layered, “Li-excess” oxides electrode materials Li[Li1/3–2x/3NixMn2/3 − x/3]O2 (x = 1/3,1/4, and 1/5). J Electrochem Soc 157(A):1202–1211

    Article  Google Scholar 

  3. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  4. Matsuda K, Taniguchi I (2004) Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis. J Power Sources 132:156–160

    Article  CAS  Google Scholar 

  5. Lee DK, Park SH, Amine K, Bang HJ, Parakash J, Sun YK (2006) High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J Power Sources 162:1346–1350

    Article  CAS  Google Scholar 

  6. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  7. Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y (2010) Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 195:567–573

    Article  CAS  Google Scholar 

  8. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112–3125

    Article  CAS  Google Scholar 

  9. Zheng JM, Zhang ZR, Wu XB, Dong ZX, Zhu Z, Yang Y (2008) The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc 155:A775–A782

    Article  CAS  Google Scholar 

  10. Zheng JM, Wu XB, Yang Y (2011) A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim Acta 56:3071–3078

    Article  CAS  Google Scholar 

  11. Li GR, Feng X, Ding Y, Ye SH, Gao XP (2012) AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta 78:308–315

    Article  CAS  Google Scholar 

  12. Qiao QQ, Zhang HZ, Li GR, Ye SH, Wang CW, Gao XP (2013) Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries. J Mater Chem A 1:5262–5268

    Article  CAS  Google Scholar 

  13. Kim MG, Jo M, Hong YS, Cho J (2009) Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun 45:218–220

    Article  Google Scholar 

  14. Jung YS, Cavanagh AS, Yan YF, George SM, Manthiram A (2011) Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J Electrochem Soc 158:A1298–A1302

    Article  CAS  Google Scholar 

  15. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Gu CD, Wang XL (2012) Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta 63:112–117

    Article  CAS  Google Scholar 

  16. Li HQ, Zhou HS (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217

    Article  CAS  Google Scholar 

  17. Kim WK, Han DW, Ryu WH, Lim SJ, Kwon HS (2012) Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance. Electrochim Acta 71:17–21

    Article  CAS  Google Scholar 

  18. He W, Qian JF, Cao YL, Ai XP, Yang HX (2012) Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv 2:3423–3429

    Article  CAS  Google Scholar 

  19. Liu B, Zhang Q, He SC, Sato Y, Zheng JW, Li DC (2011) Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochima Acta 56:6748–6751

    Article  CAS  Google Scholar 

  20. Huang YY, Chen JT, Cheng FQ, Wan W, Liu W, Zhou HH, Zhang XX (2010) A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. J Power Sources 195:8267–8274

    Article  CAS  Google Scholar 

  21. Kim HB, Park BC, Myung ST, Amine K, Prakash J, Sun YK (2008) Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. J Power Sources 179:347–350

    Article  CAS  Google Scholar 

  22. Yang K, Fan LZ, Guo J, Qu XH (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368

    Article  CAS  Google Scholar 

  23. Tu J, Zhao XB, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2006) Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method. Electrochim Acta 51:6456–6462

    Article  CAS  Google Scholar 

  24. Cho J, Kim YJ, Park B (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12:3788–3791

    Article  CAS  Google Scholar 

  25. Leea JT, Wang FM, Cheng CS, Li CC, Lin CH (2010) Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries. Electrochim Acta 55:4002–4006

    Article  Google Scholar 

  26. Rileya LA, Atta SV, Cavanagh AS, Yan Y, George SM, Liu P, Dillon AC, Lee SH (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J Power Sources 196:3317–3324

    Article  Google Scholar 

  27. Xiang JF, Chang CX, Yuan LJ, Sun JT (2008) A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery. Electrochem Commun 10:1360–1363

    Article  CAS  Google Scholar 

  28. Yang XK, Wang XY, Wei QL, Shu HB, Liu L, Yang SY, Hu BA, Song YF, Zou GS, Hu L, Yi LH (2012) Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical core–shell structure. J Mater Chem 22:19666–19672

    Article  CAS  Google Scholar 

  29. Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Crystal habit-tuned nanoplate material of Li[Li1/3–2x/3NixMn2/3–x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater 22:4364–4367

    Article  CAS  Google Scholar 

  30. Wu CR, Fang XP, Guo XW, Mao Y, Ma J, Zha CC, Wang ZX, Chen LQ (2013) Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources 231:44–49

    Article  CAS  Google Scholar 

  31. Hong YS, Park YJ, Ryu KS, Chang SH, Kim MG (2004) Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2 prepared by a simple combustion method. J Mater Chem 14:1424–1429

    Article  CAS  Google Scholar 

  32. Liu XY, Liu JL, Huang T, Yu AS (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58

    Article  CAS  Google Scholar 

  33. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267

    Article  CAS  Google Scholar 

  34. Wang QY, Liu J, Murugan AV, Manthiram A (2009) High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J Mater Chem 19:4965–4972

    Article  CAS  Google Scholar 

  35. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  36. Hong YJ, Choi SH, Sim CM, Lee JK, Kang YC (2012) Effect of boric acid on the properties of Li2MnO3-LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier. Mater Res Bull 47:4359–4364

    Article  CAS  Google Scholar 

  37. Yu C, Li GS, Guan XF, Zheng J, Li L (2012) Composites Li1+xMn0.5+0.5xNi0.5−0.5xO2 (0.1 ≤ x ≤ 0.4): optimized preparation to yield an excellent cycling performance as cathode for lithium-ion batteries. Electrochim Acta 61:216–224

    Article  CAS  Google Scholar 

  38. Wu Y, Manthiram A (2006) High capacity, surface-modified layered Li[Li(1−x)/3Mn(2−x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss. Electrochem Solid St 9:A221–A224

    Article  CAS  Google Scholar 

  39. Wu Y, Manthiram A (2009) Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5−yNi0.5−yCo2y]O2. Solid State Ionics 180:50–56

    Article  CAS  Google Scholar 

  40. Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679

    Article  CAS  Google Scholar 

  41. Shi SJ, Tu JP, Tang YY, Yu YX, Zhang YQ, Wang XL, Gu CD (2013) Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14–23

    Article  CAS  Google Scholar 

  42. Liu YJ, Liu SB, Wang YP, Chen L, Chen XH (2013) Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode. J Power Sources 222:455–460

    Article  CAS  Google Scholar 

  43. Rui XH, Ding N, Liu J, Li C, Chen CH (2010) Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 55:2384–2390

    Article  CAS  Google Scholar 

  44. Bai YS, Wang XY, Yang SY, Zhang XY, Yang XK, Shu HB, Wu Q (2012) The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. J Alloy Compd 541:125–128

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Natural Science Foundation of China under project No. 51272221, Scientific and Technical Achievement Transformation Fund of Hunan Province under project No. 2012CK1006, Key Project of Strategic New Industry of Hunan Province under project No. 2013GK4018, and Science and Technology Plan Foundation of Hunan Province under project no. 2013FJ4062.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyou Wang or Hongbo Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, G., Yang, X., Wang, X. et al. Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3 . J Solid State Electrochem 18, 1789–1797 (2014). https://doi.org/10.1007/s10008-014-2411-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2411-5

Keywords

Navigation