Skip to main content
Log in

Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present study deals with PEM fuel cells, namely with the optimization of the hot pressing process for membrane electrode assembly (MEA) fabrication. Designs of experiments (DoE) have been used for evaluating the effect of hot pressing parameters (pressure, temperature, and time) on the MEA electrical performances. Full factorial 23 DoE showed that the most important parameter is the pressing temperature. Surface response methodology indicated a non-monotonous behavior of the MEA electrical performances with respect to the pressing temperature. The MEA electrical performances increased with the pressing temperature in the temperature range from 100 to 115 °C, and decreased significantly in the temperature range from 115 to 130 °C. This behavior was attributed to drastic changes of the Nafion® 112 membrane properties and membrane/electrode interface over this temperature range. Observations of the MEA cross-section structure by scanning electron microscopy confirmed such hypotheses. Thermo-mechanical properties of Nafion® as determined by dynamic scanning calorimetry allowed estimating the glass transition temperature at ca. T g ≈ 117 °C in the conditions of the present study. The higher H2/air fuel cell performance of ca. 0.8 W cm−2 was obtained with the optimized pressing temperature for MEA fabrication of ca. 115 °C close to the T g temperature of Nafion® 112, whereas for higher temperature the structure of the Nafion® membrane and of the membrane–electrode interface is damaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bagotsky VS (2012) Fuel cells: problems and solutions 2nd edition. Wiley. pp 406 (ISBN: 978-1-118-08756-5)

  2. J-J KA, Brault P, Caillard A, Coutanceau C, Garnier J-P, Martemianov S (2007) Improvement of proton exchange membrane fuel cell electrical performance by optimization of operating parameters and electrodes preparation. J Power Sources 172:613–622

    Article  Google Scholar 

  3. Roy A, Hickner MA, Lane O, McGrath JE (2009) Investigation of membrane electrode assembly (MEA) processing parameters on performance for wholly aromatic hydrocarbon-based proton exchange membranes. J Power Sources 191:550–554

    Article  CAS  Google Scholar 

  4. Saha MS, Paul DK, Peppley BA, Karan K (2010) Fabrication of catalyst-coated membrane by modified decal transfer technique. Electrochem Commun 12:410–413

    Article  CAS  Google Scholar 

  5. Liua P, Yina G-P, Cai K-D (2009) Investigation on cathode degradation of direct methanol fuel cell. Electrochim Acta 54:6178–6183

    Article  Google Scholar 

  6. Wei G, Xua L, Huang C, Wang Y (2010) SPE water electrolysis with SPEEK/PES blend membrane. Int J Hydrog Energy 35:7778–7783

    Article  CAS  Google Scholar 

  7. Gottesfeld S, Raistrick ID, Srinivasan S (1987) Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film. J Electrochem Soc 134:1455

    Article  CAS  Google Scholar 

  8. Le Ninivin C, Balland-Longeau A, Demattei D, Coutanceau C, Lamy C, Léger J-M (2004) Sulfonated derivatives of polyparaphenylene as proton conducting membranes for direct methanol fuel cell application. J Appl Electrochem 34(11):1159–1170

    Article  Google Scholar 

  9. Liu G, Xu J, Wang T, Zhao T, Wang M, Wang Y, Li J, Wang X (2010) The performance and mechanism of multi-step activation of MEA for DMFC. Int J Hydrog Energy 35:12341–12345

    Article  CAS  Google Scholar 

  10. Sung KA, Cho K-Y, Kim W-K, Park J-K (2010) Sulfonated polyimide membrane coated with crosslinkable layer for direct methanol fuel cell. Electrochim Acta 55:995–1000

    Article  CAS  Google Scholar 

  11. Song C, Pickup PG (2004) Effect of hot pressing on the performance of direct methanol fuel cells. J Appl Electrochem 34:1065–1070

    Article  CAS  Google Scholar 

  12. Therdthianwong A, Manomayidthikarn P, Therdthianwong S (2007) Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell. Energy 32:2401–2411

    Article  CAS  Google Scholar 

  13. Zhang J, Yin G-P, Wang Z-B, Lai Q-Z, Cai K-D (2007) Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells. J Power Sources 165:73–81

    Article  CAS  Google Scholar 

  14. Nakrumpai B, Pruksathorn K, Piumsomboon P (2006) Optimum condition of membrane electrode assembly fabrication for PEM fuel cell. Korean J Chem Eng 23(4):570–575

    Article  CAS  Google Scholar 

  15. Liang Z, Zhan T, Xu C, Xu J (2007) Microscopic characterizations of membrane electrode assemblies prepared under different hot-pressing conditions. Electrochim Acta 53:894–902

    Article  CAS  Google Scholar 

  16. Urchaga P, Weissmann M, Baranton S, Girardeau T, Coutanceau C (2009) Improvement of the platinum nanoparticles—carbon substrate interaction by insertion of a thiophenol molecular bridge. Langmuir 25:6543–6550

    Article  CAS  Google Scholar 

  17. Kadjo JJ, Garnier J-P, Maye J-P, Relot F, Martemianov S (2006) Performance and instabilities of proton exchange membrane fuel cells. Russian J Electrochem 42:467

    Article  CAS  Google Scholar 

  18. Kadjo JJ (2006) Characterization and contribution to the optimization of PEMFC electrical performances. PhD Thesis, Poitiers University France, France

    Google Scholar 

  19. Bograchev D, Gueguen M, Grandidier J-C, Martemianov S (2008) Stress and plastic deformation of MEA in running fuel cell. Int J Hydrog Energy 33:5703–5717

    Article  CAS  Google Scholar 

  20. Bograchev D, Gueguen M, Grandidier J-C, Martemianov S (2008) Stress and plastic deformation of MEA in running fuel cell. J Power Sources 180:393–401

    Article  CAS  Google Scholar 

  21. Ilie VA (2010) Contribution to the optimization of MEAs and to the development of specific metrologies for PEMFC and SAMSC fuel cells. PhD Thesis Poitiers University France, France

    Google Scholar 

  22. Yeo S, Eisenberg A (1977) Physical properties and supermolecular structure of perfluorinated ion-containing (nafion) polymers. J Appl Polym Sci 21:875

    Article  CAS  Google Scholar 

  23. Kim J, Oba Y, Ohnuma M, Mori T, Nishimura C, Honma I (2010) Physico-chemical properties of temperature tolerant anhydrous nafion-benzimidazole blend membrane. Solid State Ionics 181:1098–1102

    Article  CAS  Google Scholar 

  24. Kundu S, Simon LC, Fowler M, Grot S (2005) Mechanical properties of Nafion™ electrolyte membranes under hydrated conditions. Polymer 46:11707–11715

    Article  CAS  Google Scholar 

  25. Miura Y, Yoshlda H (1990) Effects of water and alcohols on molecular motion of perfluorinated ionomer membranes. Thermochim Acta 163:161–168

    Article  CAS  Google Scholar 

  26. Tant MR, Darst KP, Lee KD, Martin CW (1989) Multiphase polymers: blends and ionomers. In: Utracki LA, Weiss RA (eds) ACS Symposium Series 395. American Chemical Society, Washington DC, Chapter 15:370

    Google Scholar 

  27. Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q (2004) FT-IR study of the microstructure of Nafion® membrane. J Membr Sci 233:39–44

    Article  CAS  Google Scholar 

  28. Boyle NG, Coey JMD, McBrierty VJ (1982) Low-temperature behaviour of water in Nafion membranes. Chem Phys Lett 86(1):16–19

    Article  CAS  Google Scholar 

  29. Yeager HL, Steck A (1981) Cation and water diffusion in Nafion ion exchange membranes: influence of polymer structure. J Electrochem Soc 128:1880–1884

    Article  CAS  Google Scholar 

  30. Batamack P, Fraissard J (1997) Proton NMR-studies on concentrated aqueous sulfuric-acid-solutions and nafion-H. Catal Lett 49:129–136

    Article  CAS  Google Scholar 

  31. Lehmani, Durand-Vidal S, Turq P (1998) Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope. J Appl Sci 68:503–507

    Article  CAS  Google Scholar 

  32. Laporta M, Pegoraro M, Zanderighi L (1999) Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity. Phys Chem Chem Phys 1:4619–4628

    Article  CAS  Google Scholar 

  33. Hietala S, Maunu S, Sundholm F, Lehtinen T, Sundholm G (1999) Water sorption and diffusion coefficients of protons and water in PVDF-g-PSSA polymer electrolyte membranes. B Polym Phys 37:2893–2900

    Article  CAS  Google Scholar 

  34. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185(1):29–39

    Article  CAS  Google Scholar 

  35. Ye G, Janzen N, Goward GR (2006) Solid-state NMR study of two classic proton conducting polymers: Nafion TM and sulfonated polyether ether ketones. Macromolecules 39:3283–3290

    Article  CAS  Google Scholar 

  36. Zhang J, Giotto M, Wen W, Jones A (2006) An NMR study of the state of ions and diffusion in perfluorosulfonate ionomer. J Membr Sci 269:118–125

    Article  CAS  Google Scholar 

  37. Mauritz KA et al (2004) State of understanding of Nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  38. Schimmerling P, Sisson JC, Zaïdi A (1998) Pratique des plans d’expériences. Lavoisier Tec & Doc, London

    Google Scholar 

  39. Grolleau C, Coutanceau C, Pierre F, Leger J-M (2010) Optimization of a surfactant free polyol method for the synthesis of platinum-cobalt electrocatalysts using Taguchi design of experiments. J Power Sources 195:1569–1576

    Article  CAS  Google Scholar 

  40. Goupy J (1999) Plan d’experiences pour surface de réponse, In: Dunod (ed), Paris

  41. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design data analysis and model building. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work pertains to the French Government program “Investissementsd’Avenir” (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01). The authors thank the Mechanical Branch of P’ Institute and SIMIS IBISA-SFA Laboratory of the University of Poitiers for their help in the realization of dynamic scanning calorimetric and scanning electron microscopy, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martemianov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martemianov, S., Raileanu Ilie, V.A. & Coutanceau, C. Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. J Solid State Electrochem 18, 1261–1269 (2014). https://doi.org/10.1007/s10008-013-2273-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2273-2

Keywords

Navigation