Skip to main content
Log in

High electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic oxidation of ethanol is studied on the non-noble catalysts Ni-Co/graphene and Ni/graphene supported on glass carbon electrode (GCE) in alkaline medium. The synthesized materials are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning transmission electron microscopy. The elements of Ni-Co/graphene and Ni/graphene catalysts are characterized using energy-dispersive X-ray spectroscopy. The electrocatalytic properties of Ni-Co/graphene and Ni/graphene for ethanol oxidation are investigated by cyclic voltammetry, chronoamperometry, and Tafel plot. Compared with Ni/graphene catalyst, Ni-Co/graphene has the higher electroactivity and better stability for ethanol oxidation. The rate constant (k s) and charge-transfer coefficient (α) are calculated for the electron exchange reaction of the modified GCE. The results indicate that Co addition could promote the oxidation reaction at the Ni/graphene catalyst. Our study demonstrates that the low-cost electrocatalyst Ni-Co/graphene has a great potential for real direct ethanol fuel cells’ application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Srinivasan S, Manko DJ, Koch H, Enayetullah MA, Appleby AJ (1990) J Power Sources 29:367–387

    Article  CAS  Google Scholar 

  2. Yano J, Shiraga T, Kitani A (2008) J Solid State Electrochem 12:1179–1182

    Article  CAS  Google Scholar 

  3. Zalc JM, Sokolovskii V, Löffler DG (2002) J Catal 206:169–171

    Article  CAS  Google Scholar 

  4. Assiongbon KA, Roy D (2005) Surf Sci 594:99–119

    Article  CAS  Google Scholar 

  5. Colmati F, Antolini E, Gonzalez ER (2007) Appl Catal B-Environ 3:106–115

    Article  Google Scholar 

  6. Lemos SG, Oliveira RTS, Santos MC, Nascente PAP, Bulhöes LOS, Pereira EC (2007) J Power Sources 163:695–701

    Article  CAS  Google Scholar 

  7. Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432–10436

    Article  CAS  Google Scholar 

  8. Zhang XY, Lu W, Da JY, Wang HT, Zhao DY, Webley PA (2009) Chem Commun 45:195–197

    Article  Google Scholar 

  9. Bianchini C, Shen PK (2009) Chem Rev 109:4183–4206

    Article  CAS  Google Scholar 

  10. Chen M, Wang ZB, Ding Y, Yin GP (2008) Electrochem Commun 10:443–446

    Article  Google Scholar 

  11. Zhao XS, Li WZ, Jiang LH, Zhou WJ, Xin Q, Yi BL, Sun GQ (2004) Carbon 42:3263–3265

    Article  CAS  Google Scholar 

  12. Yoo EJ, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Nano Lett 9:2255–2259

    Article  CAS  Google Scholar 

  13. Kostecki R, Richardson T, McLarnon F (1998) J Electrochem Soc 145:2380–2385

    Article  CAS  Google Scholar 

  14. Maiyalagan T, Scott K (2010) J Power Sources 195:5246–5251

    Article  CAS  Google Scholar 

  15. Tian XK, Zhao XY, Zhang LD, Yang C, Pi ZB, Zhang SX (2008) Nanotechnology 19:215711–215716

    Article  Google Scholar 

  16. Xia Y, Yang YF, Shao HX (2011) J Power Sources 196:495–503

    Article  CAS  Google Scholar 

  17. Das D, Das K (2010) Mater Chem Phys 123:719–722

    Article  CAS  Google Scholar 

  18. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  19. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  20. Xu C, Wang X, Zhu JW, Yang XJ, Lu LD (2008) J Mater Chem 18:5625–5629

    Article  CAS  Google Scholar 

  21. Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M (2009) Carbon 47:2054–2059

    Article  CAS  Google Scholar 

  22. Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS (2009) J Mater Chem 19:2710–2714

    Article  CAS  Google Scholar 

  23. Paek SM, Yoo E, Honma I (2009) Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  24. Williarris G, Seger B, Kamat PV (2008) Acs Nano 2:1487–1491

    Article  Google Scholar 

  25. Seger B, Kamat PV (2009) J Phys Chem C 113:7990–7995

    Article  CAS  Google Scholar 

  26. Li YM, Tang LH, Li JH (2009) Electrochem Commun 11:846–849

    Article  Google Scholar 

  27. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  28. Gilje S, Han S, Wang MS, Wang KL, Kaner RB (2007) Nano Lett 11:3394–3398

    Article  Google Scholar 

  29. Cheng MZ, Wen M, Zhou SQ, Wu QS, Sun BL (2012) Inorg Chem 51:1495–1500

    Article  CAS  Google Scholar 

  30. Srivastava M, Selvi VE, Grips VKW, Rajam KS (2006) Surf Coat Technol 201:3051–3060

    Article  CAS  Google Scholar 

  31. Li YJ, Gao W, Wang CM, Ajayan PM (2010) Carbon 48:1124–1130

    Article  CAS  Google Scholar 

  32. Wei XW, Zhou XM, Wu KL, Chen Y (2011) Cryst Eng Comm 13:1328–1332

    CAS  Google Scholar 

  33. Hu MJ, Lin B, Yu SH (2008) Nano Res 1:303–313

    Article  CAS  Google Scholar 

  34. Jafarian M, Mahjani MG, Heli H, Gobal F, Heydarpoor M (2003) Electrochem Commun 5:184–188

    Article  CAS  Google Scholar 

  35. El-Shafei AA (1999) J Electroanal Chem 471:89–95

    Article  CAS  Google Scholar 

  36. Fleischmann M, Korinek K, Pletcher D (1971) J Electroanal Chem 31:39–49

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York, p 591

    Google Scholar 

  38. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  39. Jin GP, Ding YF, Zheng PP (2007) J Power Sources 166:80–86

    Article  CAS  Google Scholar 

  40. Ling TR, Lien KT, Jow JJ (2009) Electroanalysis 20:2213–2219

    Article  Google Scholar 

  41. Cox P, Pletcher D (1990) J Appl Electrochem 20:549–554

    Article  CAS  Google Scholar 

  42. Lu BP, Bai J, Bo XJ, Zhu LD, Guo LP (2010) Electrochim Acta 55:8724–8730

    Article  CAS  Google Scholar 

  43. Qin YH, Yang HH, Zhang XS, Li P, Ma CA (2010) Int J Hydrogen Energy 33:7667–7674

    Article  Google Scholar 

  44. Ye WC, Yan JF, Ye Q, Zhou F (2010) J Phys Chem C 114:15617–15624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (no. 20775030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Du, Y., Zhang, F. et al. High electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cells. J Solid State Electrochem 17, 99–107 (2013). https://doi.org/10.1007/s10008-012-1855-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1855-8

Keywords

Navigation