Skip to main content
Log in

Evolution of the hydrogen-bonding motif in the melamine–cyanuric acid co-crystal: a topological study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The melamine (M)/cyanuric acid (CA) supramolecular system is perhaps one of the most exploited in the field of self-assembly because of the high complementarity of the components. However, it is necessary to investigate further the factors involved in the assembly process. In this study, we analyzed a set of 13 M n /CA m clusters (with n , m = 1, 2, 3), taken from crystallographic data, to characterize the nature of the hydrogen bonds involved in the self-assembly of these components as well as to provide greater understanding of the phenomenon. The calculations were performed at the B3LYP/6-311++G(d,p) and ω-B97XD (single point) levels of theory, and the interactions were analyzed within the framework of the quantum theory of atoms in molecules and by means of molecular electrostatic potential maps. Our results show that the stablest structure is the rosette-type motif and the aggregation mechanism is governed by a combination of cooperative and anticooperative effects. Our topological results explain the polymorphism in the self-assembly of coadsorbed monolayers of M and CA.

The aggregation steps of the melamine-cyanuric co-crystal is driven by a hydrogen-bonded network which is governed by a complex combination of cooperative and anticooperative effects

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seto CT, Whitesides GM (1993) Molecular self-assembly through hydrogen bonding: supramolecular aggregates based on the cyanuric acid-melamine lattice. J Am Chem Soc 115:905–916

    Article  CAS  Google Scholar 

  2. Lindsey JS (1991) Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: a review. New J Chem 15:153–180

    CAS  Google Scholar 

  3. Lehn J-M (2002) Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci U S A 99:4763–4768. doi:10.1073/pnas.072065599

    Article  CAS  Google Scholar 

  4. Lehn J-M (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed Engl 27:89–112. doi:10.1002/anie.198800891

    Article  Google Scholar 

  5. Manzano BR, Jalón FA, Soriano ML et al (2008) Multiple hydrogen bonds in the self-assembly of aminotriazine and glutarimide. Decisive role of the triazine substituents. Cryst Growth Des 8:1585–1594. doi:10.1021/cg7008682

    Article  CAS  Google Scholar 

  6. Corradi E, Meille S, Messina M et al (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786. doi:10.1002/(SICI)1521-3773(20000515)39:10<1782::AID-ANIE1782>3.0.CO;2-5

    Article  CAS  Google Scholar 

  7. Stupp SI, Palmer LC (2014) Supramolecular chemistry and self-assembly in organic materials design. Chem Mater 26:507–518

    Article  CAS  Google Scholar 

  8. Choi IS, Li X, Simanek EE et al (1999) Self-assembly of hydrogen-bonded polymeric rods based on the cyanuric acid · melamine lattice. Chem Mater 11:684–690. doi:10.1021/cm980540j

    Article  CAS  Google Scholar 

  9. Kerckhoffs JMCA, ten Cate MGJ, Mateos-Timoneda MA et al (2005) Selective self-organization of guest molecules in self-assembled molecular boxes. J Am Chem Soc 127:12697–12708. doi:10.1021/ja0536973

    Article  CAS  Google Scholar 

  10. Kimizuka N, Kawasaki T, Hirata K, Kunitake T (1998) Supramolecular membranes. Spontaneous assembly of aqueous bilayer membrane via formation of hydrogen bonded pairs of melamine and cyanuric acid derivatives. J Am Chem Soc 120:4094–4104

    Article  CAS  Google Scholar 

  11. Ma M, Gong Y, Bong D (2009) Lipid membrane adhesion and fusion driven by designed, minimally multivalent hydrogen-bonding lipids. J Am Chem Soc 131:16919–16926

    Article  CAS  Google Scholar 

  12. Yagai S, Nakajima T, Karatsu T et al (2004) Phototriggered self-assembly of hydrogen-bonded rosette. J Am Chem Soc 126:11500–11508. doi:10.1021/ja047783z

    Article  CAS  Google Scholar 

  13. Wang Y, Wei B, Wang Q (1990) Crystal structure of melamine cyanuric acid complex (1:1) trihydrochloride, MCA · 3HCl. J Crystallogr Spectrosc Res 20:79–84

    Article  CAS  Google Scholar 

  14. Ranganathan A, Pedireddi VR, Rao CNR (1999) Hydrothermal synthesis of organic channel structures: 1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J Am Chem Soc 121:1752–1753

    Article  CAS  Google Scholar 

  15. Prior TJ, Armstrong JA, Benoit DM, Marshall KL (2013) The structure of the melamine–cyanuric acid co-crystal. CrystEngComm 15:5838–5843. doi:10.1039/c3ce40709h

  16. Seto CT, Whitesides GM (1990) Self-assembly based on the cyanuric acid-melamine lattice. J Am Chem Soc 112:6409–6411. doi:10.1021/ja00173a046

    Article  CAS  Google Scholar 

  17. Zerkowski JA, Seto CT, Whitesides GM (1992) Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice. J Am Chem Soc 114:5473–5475. doi:10.1021/ja00039a096

    Article  CAS  Google Scholar 

  18. Seto CT, Whitesides GM (1993) Synthesis, characterization, and thermodynamic analysis of a 1 + 1 self-assembling structure based on the cyanuric acid·melamine lattice. J Am Chem Soc 115:1330–1340. doi:10.1021/ja00057a016

    Article  CAS  Google Scholar 

  19. Chin DN, Gordon DM, Whitesides GM (1994) Computational simulations of supramolecular hydrogen-bonded aggregates: HubM3, FlexM3, and adamantane-based hubs in chloroform. J Am Chem Soc 116:12033–12044

    Article  CAS  Google Scholar 

  20. Bielejewska AG, Marjo CE, Prins LJ et al (2001) Thermodynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine-cyanurate assemblies: a model description. J Am Chem Soc 123:7518–7533

    Article  CAS  Google Scholar 

  21. Xu W, Dong M, Gersen H et al (2007) Cyanuric acid and melamine on Au111: structure and energetics of hydrogen-bonded networks. Small 3:854–858. doi:10.1002/smll.200600407

    Article  CAS  Google Scholar 

  22. Ma M, Bong D (2011) Determinants of cyanuric acid and melamine assembly in water. Langmuir 27:8841–8853. doi:10.1021/la201415d

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian, Wallingford

  24. Dey R, Bhattacharya B, Mondal P et al (2014) Fabrication of two supramolecular self-assemblies of Mn(II)-dicarboxylates with trans-4,4′-azobispyridine: analysis of H-bonding interactions with Hirshfeld surfaces and DFT calculations. J Mol Struct 1067:64–73. doi:10.1016/j.molstruc.2014.02.059

    Article  CAS  Google Scholar 

  25. Scheiner S (2015) Dissection of the factors affecting formation of a CH⋯O H-bond. A case study. Crystals 5:327–345. doi:10.3390/cryst5030327

  26. Duarte DJR, Sosa GL, Peruchena NM (2013) Nature of halogen bonding. A study based on the topological analysis of the Laplacian of the electron charge density and an energy decomposition analysis. J Mol Model 19:2035–2041. doi:10.1007/s00894-012-1624-8

    Article  CAS  Google Scholar 

  27. Kirsch P, Tong Q, Untenecker H (2013) Crystal design using multipolar electrostatic interactions: a concept study for organic electronics. Beilstein J Org Chem 9:2367–2373. doi:10.3762/bjoc.9.272

    Article  Google Scholar 

  28. Angelina EL, Andujar SA, Tosso RD et al (2014) Non-covalent interactions in receptor-ligand complexes. A study based on the electron charge density. J Phys Org Chem 27:128–134. doi:10.1002/poc.3250

    Article  CAS  Google Scholar 

  29. Elango M, Subramanian V, Sathyamurthy N (2008) The self-assembly of metaboric acid molecules into bowls, balls and sheets. J Phys Chem A 112:8107–8115. doi:10.1021/jp8019254

    Article  CAS  Google Scholar 

  30. Kannappan K, Werblowsky TL, Rim KT et al (2007) An experimental and theoretical study of the formation of nanostructures of self-assembled cyanuric acid through hydrogen bond networks on graphite †. J Phys Chem B 111:6634–6642

    Article  CAS  Google Scholar 

  31. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–559

    Article  CAS  Google Scholar 

  32. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  33. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  34. Keith TA (2012) AIMAll version 12.06.03. TK Gristmill Software, Overland Park. Available from http://aim.tkgristmill.com/

  35. Bader RFW, Caroll MT, Cheeseman JR, Chang C (1987) Properties of atoms in molecules: atomic volumes. J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  36. Wang Y-L, Mebel AM, Wu C-J et al (1997) IR spectroscopy and theoretical vibrational calculation of the melamine molecule. J Chem Soc Faraday Trans 93:3445–3451. doi:10.1039/a701732d

    Article  CAS  Google Scholar 

  37. Drozd M, Marchewka MK (2005) The structure, vibrational spectra and nonlinear optical properties of neutral melamine and singly, doubly and triply protonated melaminium cations—theoretical studies. J Mol Struct THEOCHEM 716:175–192. doi:10.1016/j.theochem.2004.11.020

    Article  CAS  Google Scholar 

  38. Li Z, Chen G, Xu Y et al (2013) Study of the structural and the spectral characteristics of [C3N3(NH2)3] n (n =1-4) clusters. J Phys Chem A 117:12511–12518

  39. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  40. Lee HM, Singh NJ, Kim KS (2006) Weak to strong hydrogen bond. In: Grabowski S (ed) Hydrogen bonding - new insights Springer, Dordrecht, pp 149–192

  41. Karpfen A (2003) Cooperative effects in hydrogen bonding. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 123. Wiley, Hoboken, pp 469–510

  42. Bader RFW, Beddall PM (1972) Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J Chem Phys 56:3320. doi:10.1063/1.1677699

    Article  CAS  Google Scholar 

  43. Ramírez F, Hadad CZ, Guerra D et al (2011) Structural studies of the water pentamer. Chem Phys Lett 507:229–233. doi:10.1016/j.cplett.2011.03.084

    Article  Google Scholar 

  44. Koch U, Popelier PLA (1995) Characterization of C-H-O Hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. doi:10.1021/j100024a016

    Article  CAS  Google Scholar 

  45. Vallejos MM, Peruchena NM (2012) Preferential formation of the different hydrogen bonds and their effects in tetrahydrofuran and tetrahydropyran microhydrated complexes. J Phys Chem A 116:4199–4210. doi:10.1021/jp301498n

    Article  CAS  Google Scholar 

  46. Angelina EL, Peruchena NM (2011) Strength and nature of hydrogen bonding interactions in mono- and di-hydrated formamide complexes. J Phys Chem A 115:4701–4710. doi:10.1021/jp1105168

    Article  CAS  Google Scholar 

  47. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  48. Angelina EL, Duarte DJR, Peruchena NM (2013) Is the decrease of the total electron energy density a covalence indicator in hydrogen and halogen bonds? J Mol Model 19:2097–2106. doi:10.1007/s00894-012-1674-y

    Article  CAS  Google Scholar 

  49. Duarte DJR, Angelina EL, Peruchena NM (2014) Physical meaning of the QTAIM topological parameters in hydrogen bonding. J Mol Model 20:2510. doi:10.1007/s00894-014-2510-3

    Article  Google Scholar 

  50. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density ? Does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628. doi:10.1002/anie.198406271

    Article  Google Scholar 

  51. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  52. Ofori A, Suvanto S, Jääskeläinen S et al (2016) Versatile coordination modes in silver-imidazolecarbaldehyde oxime complexes: structural and computational analysis. Cryst Growth Des 16:255–264. doi:10.1021/acs.cgd.5b01222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grants from Secretaría de Ciencia y Tecnología, Universidad Tecnológica Nacional, Facultad Regional Resistencia supported this work. A.N.P. thanks Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, for a doctoral fellowship. N.M.P. is a CONICET career researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladis L. Sosa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petelski, A.N., Peruchena, N.M. & Sosa, G.L. Evolution of the hydrogen-bonding motif in the melamine–cyanuric acid co-crystal: a topological study. J Mol Model 22, 202 (2016). https://doi.org/10.1007/s00894-016-3070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3070-5

Keywords

Navigation