Skip to main content
Log in

In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Fruit softening is associated to cell wall modifications produced by a set of hydrolytic enzymes and proteins. Expansins are proteins with no catalytic activity, which have been associated with several processes during plant growth and development. A role for expansins has been proposed during softening of fruits, and many fruit-specific expansins have been identified in a variety of species. A 3D model for VpEXPA2, an α-expansin involved in softening of Vasconcellea pubescens fruit, was built for the first time by comparative modeling strategy. The model was validated and refined by molecular dynamics simulation. The VpEXPA2 model shows a cellulose binding domain with a β-sandwich structure, and a catalytic domain with a similar structure to the catalytic core of endoglucanase V (EGV) from Humicola insolens, formed by six β-strands with interconnected loops. VpEXPA2 protein contains essential structural moieties related to the catalytic mechanism of EGV, such as the conserved HFD motif. Nevertheless, changes in the catalytic environment are observed in the protein model, influencing its mode of action. The lack of catalytic activity of this expansin and its preference for cellulose are discussed in light of the structural information obtained from the VpEXPA2 protein model, regarding the distance between critical amino acid residues. Finally, the VpEXPA2 model improves our understanding on the mechanism of action of α-expansins on plant cell walls during softening of V. pubescens fruit.

Homology model, molecular docking and MD simulations exploring the α-expansin interaction from mountain papaya fruit (VpEXPA2) with two putative ligands. Homology model of VpEXPA2 in surface and cartoon representations, showing the two-domain structure (left). A cellulosic ligand (cellodextrin 8-mer; center) and a hemicellulosic ligand (right) shows different conformation into the open groove of VpEXPA2, and are in agreement with the binding energy differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4:1425–1433

    Article  CAS  Google Scholar 

  2. McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci U S A 91:6574–6578

    Article  CAS  Google Scholar 

  3. Kende H, Bradford K, Brummell D, Cho HT, Cosgrove DJ, Fleming A, Gehring C, Lee Y, McQueen-Mason S, Rose JK, Voesenek LA (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  Google Scholar 

  4. Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  Google Scholar 

  5. Davies GJ, Tolley SP, Henrissat B, Hjort C, Schülein M (1995) Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry 34:16210–16220

    Article  CAS  Google Scholar 

  6. Fedorov AA, Ball T, Valenta R, Almo SC (1997) X-ray crystal structures of birch pollen profilin and Phl p 2. Int Arch Allergy Immunol 113:109–113

    Article  CAS  Google Scholar 

  7. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  Google Scholar 

  8. Yennawar NH, Li L-C, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci U S A 103:14664–14671

    Article  CAS  Google Scholar 

  9. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-Function analysis of the bacterial expansin EXLX1. J Biol Chem 286:16814–16823

    Article  CAS  Google Scholar 

  10. Whitney SEC, Gidley MJ, McQueen-Mason S (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22:327–334

    Article  CAS  Google Scholar 

  11. Gaete-Eastman C, Figueroa CR, Balbontín C, Moya M, Atkinson RG, Herrera R, Moya-León MA (2009) Expression of an ethylene-related expansin gene during softening of mountain papaya fruit. Postharvest Biol Technol 53:58–65

    Article  CAS  Google Scholar 

  12. Georgelis N, Yennawar NH, Cosgrove DJ (2012) Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci U S A 109:14830–14835

    Article  CAS  Google Scholar 

  13. Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 81:59–73

    Article  Google Scholar 

  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DF (1990) Basic local alignment search tools. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  15. Jonnes DT (1999) Protein secondary structure prediction based on position specific scoring matrices. J Mol Biol 292:195–202

    Article  Google Scholar 

  16. Thompson J, Higgins D, Gibson T (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  17. Šali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  Google Scholar 

  18. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculation. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  19. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  20. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field M, Fischer JS, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1992) Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. FASEB J 6:A143

    Google Scholar 

  21. Schlenkrich M, Brickmann J, MacKerell AD Jr, Karplus M (1996) In: Roux B, Merz KM (eds) A molecular perspective from computation and experiment. Birkhauser, Boston, pp 31–81

    Google Scholar 

  22. Jorgensen WL, Chandresekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  23. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  CAS  Google Scholar 

  24. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  25. Lüthy R, Bowie JU, Eiserberg D (1992) Assessment of protein models with three- dimensional profiles. Nature 356:83–85

    Article  Google Scholar 

  26. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  27. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field. J Comput Chem 31:671–690

    CAS  Google Scholar 

  28. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  29. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  30. Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854–864

    Article  CAS  Google Scholar 

  31. Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  CAS  Google Scholar 

  32. Cosgrove DJ, Bendinger P, Durachko D (1997) Group I allergen of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A 94:6559–6564

    Article  CAS  Google Scholar 

  33. Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23:669–677

    Article  CAS  Google Scholar 

  34. Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272:24016–24023

    Article  CAS  Google Scholar 

  35. Nardi C, Escudero C, Villarreal N, Martínez G, Civello PM (2013) The carbohydrate-binding module of Fragaria x ananassa expansin 2 (CBM-FaEXP2) binds to cell wall polysaccharides and decreases cell wall enzymes activities ‘in vitro’. J Plant Res 126:151–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

L. Morales-Quintana acknowledges CONICYT for a doctoral fellowship. This work has been supported by Initiation FONDECYT grant N° 11100481 and CONICYT Anillo ACT-1110 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Gaete-Eastman or María Alejandra Moya-León.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 131 kb)

Fig. S2

(DOCX 150 kb)

Fig. S3

(DOCX 908 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaete-Eastman, C., Morales-Quintana, L., Herrera, R. et al. In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies. J Mol Model 21, 115 (2015). https://doi.org/10.1007/s00894-015-2656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2656-7

Keywords

Navigation