Skip to main content
Log in

Analysis of the differences in the folding mechanisms of c-type lysozymes based on contact maps constructed with interresidue average distances

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A method for analyzing differences in the folding mechanisms of proteins in the same family is presented. Using only information from the amino acid sequences, contact maps derived from the interresidue average distances are employed. These maps, referred to as average distance maps (ADM), are applied to the folding of c-type lysozymes. The results reveal that the ADMs of these lysozymes reflect the differences in the detailed folding mechanisms. Further possible applications of the present method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Plaxco KW, Simons KT, Baker D (1998) J Mol Biol 277:985–994

    Article  CAS  Google Scholar 

  2. Plaxco KW, Simons KT, Ruczinski I, Baker DK (2000) Biochemistry 39:11177–11183

    Article  CAS  Google Scholar 

  3. Baker D (2000) Nature 405:39–42

    Article  CAS  Google Scholar 

  4. Zarrine-Afsar A, Larson SM, Davidson AR (2005) Curr Opin Str Biol 15:42–49

    Article  CAS  Google Scholar 

  5. Gunasekaran K, Eyles SJ, Hagler AT, Gierasch LM (2001) Curr Opin Str Biol 11:83–93

    Article  CAS  Google Scholar 

  6. Nishimura C, Lietzow MA, Dyson HJ, Wright PE (2005) J Mol Biol 351:383–392

    Article  CAS  Google Scholar 

  7. Portman JJ, Takada S, Wolynes PG (1998) Phys Rev Lett 81:5237–5240

    Article  CAS  Google Scholar 

  8. Portman JJ, Takada S, Wolynes PG (2001) J Chem Phys 114:5069–5081

    Article  CAS  Google Scholar 

  9. Portman JJ, Takada S, Wolynes PG (2001) J Chem Phys 114:5082–5096

    Article  CAS  Google Scholar 

  10. Gromiha MM, Selvaraj S (2001) J Mol Biol 310:27–32

    Article  CAS  Google Scholar 

  11. Makarov DE, Keller CA, Plaxo KW, Metiu H (2002) Proc Natl Acad Sci USA 99:3535–3539

    Article  CAS  Google Scholar 

  12. Nölting B, Schalike W, Hampel P, Grundig F, Gantert S, Sips N, Bandlow W, Qi PX (2003) J Theor Biol 223:299–307

    Article  Google Scholar 

  13. Weikl TR, Dill KA (2003) J Mol Biol 329:585–598

    Article  CAS  Google Scholar 

  14. Jiang Z, Zhang L, Chen J, Xia A, Zhao D (2004) Polymer 45:609–621

    Article  CAS  Google Scholar 

  15. Dixit PD, Weikl TR (2006) Proteins 64:193–197

    Article  CAS  Google Scholar 

  16. Calloni G, Taddei N, Plaxco KW, Ramponi G, Stefani M, Chiti F (2003) J Mol Biol 330:577–591

    Article  CAS  Google Scholar 

  17. Gong H, Isom DG, Srinivasan R, Rose GD (2003) J Mol Biol 327:1149–1154

    Article  CAS  Google Scholar 

  18. Prabhu NP, Bhuyan AK (2006) Biochemistry 45:3805–3812

    Article  CAS  Google Scholar 

  19. Huang JT, Tian J (2006) Proteins 63:551–554

    Article  Google Scholar 

  20. Ichimaru T, Kikuchi T (2003) Proteins 51:515–530

    Article  CAS  Google Scholar 

  21. Nakajima S, Álvarez-Salgado E, Kikuchi T, Arredondo-Peter R (2005) Proteins 61:500–506

    Article  CAS  Google Scholar 

  22. Kikuchi T, Némethy G, Scheraga HA (1988) J Protein Chem 7:427–471

    Article  CAS  Google Scholar 

  23. Kikuchi T (2002) In: Pandalai SG (ed) Recent research developments in protein engineering. Research Signpost, Kerala, India, pp 1–48

    Google Scholar 

  24. Radford SE, Dobson CM, Evans PA (1992) Nature 358:302–307

    Article  CAS  Google Scholar 

  25. Hooke SD, Radford SE, Dobson CM (1994) Biochemistry 33:5867–5876

    Article  CAS  Google Scholar 

  26. Morozova-Roche LA, Jones JA, Noppe W, Dobson CM (1999) J Mol Biol 289:1055–1073

    Article  CAS  Google Scholar 

  27. Forge V, Wijesinha RT, Balbach J, Brew K, Robinson CV, Redfield C, Dobson CM (1999) J Mol Biol 288:673–688

    Article  CAS  Google Scholar 

  28. Chowdhury FA, Fairman R, Bi Y, Rigotti DJ, Raleigh DP (2004) Biochemistry 43:9961–9967

    Article  CAS  Google Scholar 

  29. Arai M, Ito K, Inobe T, Nakao M, Maki K, Kamagata K, Kihara H, Amemiya Y, Kuwajima K (2002) J Mol Biol 321:121–132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, S., Kikuchi, T. Analysis of the differences in the folding mechanisms of c-type lysozymes based on contact maps constructed with interresidue average distances. J Mol Model 13, 587–594 (2007). https://doi.org/10.1007/s00894-007-0185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0185-8

Keywords

Navigation