Skip to main content
Log in

A simple procedure to determine the infectivity and host range of viruses infecting anaerobic and hyperthermophilic microorganisms

  • Method Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Plaque assay is the method traditionally used to isolate and purify lytic viruses, to determine the viral titer and host range. Whereas most bacterioviruses are either temperate or lytic, the majority of known archeoviruses are not lytic (i.e. they are temperate or chronic). In view of the widespread occurrence of such viruses in extreme environments, we designed an original method, called the inverted spot test, to determine the host range and infectivity of viruses isolated from anaerobic hyperthermophilic and sulfur-reducing microorganisms. Here, we used this approach to prove for the first time the infectivity of Pyrococcus abyssi virus 1 (PAV1) and to confirm the host range of Thermococcus prieurii virus 1 (TPV1), the only two viruses isolated so far from any of the described marine hyperthermophilic archaea (Euryarchaeota phylum, Thermococcales order).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold HP, Ziese U, Zillig W (2000) SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272:409–416

    Article  PubMed  CAS  Google Scholar 

  • Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267

    Article  PubMed  CAS  Google Scholar 

  • Bae SS, Kim YJ, Yang SH, Lim JK, Jeon JH, Lee HS, Kang SG, Kim SJ, Lee JH (2006) Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field 2006. J Microbiol and Biotechnol 16:1826–1831

    CAS  Google Scholar 

  • Barbier G, Godfroy A, Meunier JR, Quérellou J, Cambon MA, Lesongeur F, Grimont PA, Raguénès G (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Bacteriol 4:1829–1837

    Article  Google Scholar 

  • Bath C, Cukalac T, Porter K, Dyall-Smith ML (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350:228–239

    Article  PubMed  CAS  Google Scholar 

  • Bettstetter M, Peng X, Garrett RA, Prangishvili D (2003) AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315:68–79

    Article  PubMed  CAS  Google Scholar 

  • Bize A, Karlsson EA, Ekefjärd K, Quax TEF, Pina M, Prevost M-C, Forterre P, Tenaillon O, Bernander R, Prangishvili D (2009) A unique virus release mechanism in the Archaea. Proc Natl Acad Sci USA 106:11306–11311

    Article  PubMed  CAS  Google Scholar 

  • Brumfield SK, Ortmann AC, Ruigrok V, Suci P, Douglas T, Young MJ (2009) Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus Sulfolobus turreted icosahedral virus. J Virol 83:5964–5970

    Article  PubMed  CAS  Google Scholar 

  • Ceballos RM, Marceau CD, Marceau JO, Morris S, Clore AJ, Stedman KM (2012) Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments. Front Microbiol 3:295

    Article  PubMed  Google Scholar 

  • Contursi P, Jensen S, Aucelli T, Rossi M, Bartolucci S, She Q (2006) Characterization of the Sulfolobus host-SSV2 virus interaction. Extremophiles 10:615–627

    Article  PubMed  CAS  Google Scholar 

  • Erauso G, Godfroy A, Raguenes G, Prieur D (1995) Plate cultivation techniques for strictly anaerobic, thermophilic, sulfur-metabolizing archaea. In: Robb FT (ed) Thermophiles, archaea: a laboratory manual. Cold Spring Harbor Laboratory, New York, pp 25–29

    Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61

    Article  CAS  Google Scholar 

  • Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363

    Article  PubMed  CAS  Google Scholar 

  • Gaudin M, Gauliard E, Schouten S, Houel-Renault L, Lenormand P, Marguet E, Forterre P (2012) Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Environ Microbiol Rep. doi:10.1111/j.1758-2229.2012.00348.x

    Google Scholar 

  • Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic Euryarchaeota: Pyrococcus abyssi. J Bacteriol 185:3888–3894

    Article  PubMed  CAS  Google Scholar 

  • Geslin C, Gaillard M, Flament D, Rouault K, LeRomancer M, Prieur D, Erauso G (2007) Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J Bacteriol 189:4510–4519

    Article  PubMed  CAS  Google Scholar 

  • Gias E, Nielsen SU, Morgan LA, Toms GL (2008) Purification of human respiratory syncytial virus by ultracentrifugation in iodixanol density gradient. J Virol Methods 147:328–332

    Article  PubMed  CAS  Google Scholar 

  • Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguénès G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • González JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130

    Article  PubMed  Google Scholar 

  • Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Env Microbiol 14:503–516

    Article  CAS  Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2002) Introduction à l’analyse génétique. (3ème édition). De Boeck. Chapter 7, pp 222

  • Grote R, Li L, Tamaoka J, Kato C, Horikoshi K, Antranikian G (1999) Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62

    Article  PubMed  CAS  Google Scholar 

  • Häring M, Vestergaard G, Brügger K, Rachel R, Garrett RA, Prangishvili D (2005a) Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures. J Bacteriol 187:3855–3858

    Article  PubMed  Google Scholar 

  • Häring M, Vestergaard G, Rachel R, Chen L, Garrett RA, Prangishvili D (2005b) Virology: independent virus development outside a host. Nature 436:1101–1102

    Article  PubMed  Google Scholar 

  • Janekovic D, Wunderl S, Holz I, Zillig W, Gierl A, Neumann H (1983) TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax. Mol Gen Genet 192:39–45

    Article  CAS  Google Scholar 

  • Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851

    Article  PubMed  CAS  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambarcota A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 49:351–359

    Google Scholar 

  • Mei Y, Chen J, Sun D, Chen D, Yang Y, Shen P, Chen X (2007) Induction and preliminary characterization of a novel halophage SNJ1 from lysogenic Natrinema sp. F5. Can J Microbiol 53:1106–1110

    Article  PubMed  CAS  Google Scholar 

  • Miroshnichenko ML, Gongadze GM, Rainey FA, Kostyukova AS, Lysenko AM, Chernyh NA, Bonch-Osmolovskaya EA (1998) Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    Article  PubMed  CAS  Google Scholar 

  • Noble R, Fuhrman J (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  • Pina M, Bize A, Forterre P, Prangishvili D (2011) The archeoviruses. FEMS Microbiol Rev 35:1035–1054

    Article  PubMed  CAS  Google Scholar 

  • Porter K, Russ BE, Dyall-Smith ML (2007) Virus–host interactions in salt lakes. Curr Opin Microbiol 4:418–424

    Article  Google Scholar 

  • Prieur D, Erauso G, Flament D, Gaillard M, Geslin C, Gonnet M, Le Romancer M, Lucas S, Forterre P (2006) Deep-sea thermococcales and their genetic elements: plasmids and viruses. In: Rainey FA, Oren A (eds). Extremophiles. pp 253–279

  • Rice G, Tang L, Stedman KM, Roberto F, Spuhler J, Gillitzer E, Johnson JE, Douglas T, Young M (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 101:7716–7720

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89:7645–7649

    Article  PubMed  CAS  Google Scholar 

  • Stedman KM, She Q, Phan H, Arnold HP, Holz I, Garrett RA, Zillig W (2003) Relationships between Fuselloviruses Infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res Microbiol 154:295–302

    Article  PubMed  CAS  Google Scholar 

  • Stolt P, Zillig W (1994) Transcription of the halophage phi H repressor gene is abolished by transcription from an inversely oriented lytic promoter. FEBS Lett 344:125–128

    Article  PubMed  CAS  Google Scholar 

  • Suttle CA, Fuhrman JA (2010) Enumeration of virus particles in aquatic or sediment samples by epifluorescence microscopy. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of Aquatic Viral Ecology, Chapter 15, pp 145–153

  • Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4:470–483

    Article  PubMed  CAS  Google Scholar 

  • Witte A, Baranyi U, Klein R, Sulzner M, Luo C, Wanner G, Kruger DH, Lubitz W (1997) Characterization of Natronobacterium magadii phage phi Ch1, a unique archaeal phage containing DNA and RNA. Mol Microbiol 23:603–616

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a MENRT Grant to A. Gorlas, by the CNRS “PID Origines des Planètes et de la Vie” programs (2007–2009) and the Foundation for Research on Biodiversity (FRB) (2009–2012). We thank Anne-Claire Baudoux and Christelle Desnues for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Gorlas.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2013_513_MOESM1_ESM.tif

Figure S1 Spot tests results with 10 μl TPV1 virions purified by iodixanol and several controls (10 μl TPV1 virions purified by CsCl, 10 μl iodixanol solution, and 10 μl T. prieurii culture supernatant) on the lawn of T. barophilus after 12 h of incubation (TIFF 203 kb)

792_2013_513_MOESM2_ESM.tif

Table S2a Characteristics distinguishing Thermococcus species tested in this study.1, T. barophilus (Marteinsson et al., 1999); 2, T. onnurineus (Bae et al., 2006); 3, T. kodakaraensis (Atomi et al., 2004); 4, T. celer (Zillig et al., 1983); 5, T. gorgonarius (Miroshnichenko et al., 1998); 6, T. siculi (Grote et al., 1999); 7, T. pacificus (Miroshnichenko et al., 1998); 8, T. fumicolans (Godfroy et al., 1996); 9, T. sibiricus (Miroshnichenko et al., 2001); 10, T. gammatolerans (Jolivet et al., 2003). +, Positive; –, Negative; S, Stimulatory; R, Required. ND: Not done. (TIFF 145 kb)

792_2013_513_MOESM3_ESM.tif

Table S2b Characteristics distinguishing Pyrococcus species tested in this study.1, P. furiosus (Fiala and Stetter, 1986); 2, P. horikoshii (González et al. 1998); 3, P. glycovorans (Barbier et al., 1999).+, Positive; –, Negative; S, Stimulatory; R, Required (TIFF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorlas, A., Geslin, C. A simple procedure to determine the infectivity and host range of viruses infecting anaerobic and hyperthermophilic microorganisms. Extremophiles 17, 349–355 (2013). https://doi.org/10.1007/s00792-013-0513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0513-0

Keywords

Navigation