Skip to main content

Advertisement

Log in

Nonsurgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

The aim of this controlled, parallel design clinical study was to evaluate the effectiveness of an Er:YAG (erbium-doped:yttrium, aluminum, and garnet) laser for nonsurgical treatment of periimplantitis lesions. Twenty patients, each of whom displayed at least one implant with (a) moderate and (b) advanced periimplantitis (n=40 implants; IMZ, ITI, Spline Twist, ZL-Duraplant, Camlog), were randomly instrumented nonsurgically using either (1) an Er:YAG laser (100 mJ/pulse, 10 Hz) device (LAS) or (2) mechanical debridement using plastic curettes and antiseptic therapy with chlorhexidine digluconate (0.2%) (C). The following clinical parameters were measured at baseline, 3, 6, and 12 months after treatment: plaque index, bleeding on probing (BOP), probing depth, gingival recession, and clinical attachment level (CAL). Mean BOP improved significantly in both groups at 3, 6, and 12 months (a− lesions: P<0.001 and b− lesions: P<0.01, respectively). After 3 and 6 months, the mean reduction of BOP was significantly higher in the LAS group when compared to the C group (a− and b− lesions: P<0.01 and P<0.05, respectively). At 3 and 6 months, both groups revealed significant CAL gains at a− and b− lesions (P<0.01, respectively). In both groups, however, the mean CAL at a− and b− lesions was not significantly different from the respective baseline values at 12 months (P>0.05, respectively). Although treatment of periimplantitis lesions with LAS resulted in a significantly higher BOP reduction than C, its effectiveness seemed to be limited to a period of 6 months, particularly at b− lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albrektsson T, Isidor F (1994) Consensus report of session IV. In: Lang NP, Karring T (eds) Proceedings of the first European workshop on periodontology. Quintessence, London, pp 365–369

  2. Aoki A, Ando Y, Watanabe H, Ishikawa I (1994) In vitro studies on laser scaling of subgingival calculus with an erbium:YAG laser. J Periodontol 65:1097–1106

    PubMed  Google Scholar 

  3. Augthun M, Tinschert J, Huber A (1998) In vitro studies on the effect of cleaning methods on different implant surfaces. J Periodontol 69:857–864

    PubMed  Google Scholar 

  4. Bach G, Neckel C, Mall C, Krekeler G (2000) Conventional versus laser-assisted therapy of periimplantitis: a five-year comparative study. Implant Dent 9:247–251

    Article  PubMed  Google Scholar 

  5. Badersten A, Nilveus R, Egelberg J (1990) Scores of plaque, bleeding, suppuration and probing depth to predict probing attachment loss. 5 years of observation following nonsurgical periodontal therapy. J Clin Periodontol 17:102–107

    Article  PubMed  Google Scholar 

  6. Becker W, Becker BE, Newman MG, Nyman S (1990) Clinical and microbiologic findings that may contribute to dental implant failure. Int J Oral Maxillofac Implants 5:31–38

    PubMed  Google Scholar 

  7. Claffey N, Egelberg J (1995) Clinical indicators of probing attachment loss following initial periodontal treatment in advanced periodontitis patients. J Clin Periodontol 22:690–696

    Article  PubMed  Google Scholar 

  8. Cortellini P, Paolo G, Prato P, Tonetti MS (1996) Long-term stability of clinical attachment following guided tissue regeneration and conventional therapy. J Clin Periodontol 23:106–111

    Article  PubMed  Google Scholar 

  9. Deppe H, Horch HH, Henke J, Donath K (2001) Per-implant care of ailing implants with the carbon dioxide laser. Int J Oral Maxillofac Implants 16:659–667

    PubMed  Google Scholar 

  10. Eberhard J, Ehlers H, Falk W, Acil Y, Albers HK, Jepsen S (2003) Efficacy of subgingival calculus removal with Er:YAG laser compared to mechanical debridement: an in situ study. J Clin Periodontol 30:511–518

    Article  PubMed  Google Scholar 

  11. Ericsson I, Lindhe J (1993) Probing depth at implants and teeth. An experimental study in the dog. J Clin Periodontol 20:623–627

    Article  PubMed  Google Scholar 

  12. Folwaczny M, Mehl A, Aggstaller H, Hickel R (2002) Antimicrobial effects of 2.94 μm Er:YAG laser radiation on root surfaces: an in vitro study. J Clin Periodontol 29:73–78

    Article  PubMed  Google Scholar 

  13. Fox SC, Moriarty JD, Kusy RP (1990) The effects of scaling a titanium implant surface with metal and plastic instruments: an in vitro study. J Periodontol 61:485–490

    PubMed  Google Scholar 

  14. Heitz-Mayfield LJ, Lang NP (2004) Antimicrobial treatment of peri-implant diseases. Int J Oral Maxillofac Implants 19:128–139 (Suppl)

    PubMed  Google Scholar 

  15. Karring ES, Stavropoulos A, Ellegaard B, Karring T (2005) Treatment of peri-implantitis by the Vector system. Clin Oral Implants Res 16:288–293

    Article  PubMed  Google Scholar 

  16. Kato T, Kusakari H, Hoshino E (1998) Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med 23:299–309

    Article  PubMed  Google Scholar 

  17. Kreisler M, Al Haj H, Götz H, Duschner H, d’Hoedt B (2002) Effect of simulated CO(2) and GaAlAs laser surface decontamination on temperature changes in Ti-plasma sprayed dental implants. Lasers Surg Med 30:233–239

    Article  PubMed  Google Scholar 

  18. Kreisler M, Götz H, Duschner H (2002) Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211

    PubMed  Google Scholar 

  19. Kreisler M, Kohnen W, Marinello C, Gotz H, Duschner H, Jansen B, d’Hoedt B (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73:1292–1298

    Article  PubMed  Google Scholar 

  20. Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, d’Hoedt B (2005) In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res 16:36–43

    Article  PubMed  Google Scholar 

  21. Lang NP, Wetzel AC, Stich H, Caffesse RG (1994) Histologic probe penetration in healthy and inflamed peri-implant tissues. Clin Oral Implants Res 5:191–201

    Article  PubMed  Google Scholar 

  22. Lavigne SE, Krust-Bray KS, Williams KB, Killoy WJ, Theisen F (1994) Effects of subgingival irrigation with chlorhexidine on the periodontal status of patients with HA-coated integral dental implants. Int J Oral Maxillofac Implants 9:156–162

    PubMed  Google Scholar 

  23. Löe H (1967) The gingival index, the plaque index and the retention index systems. J Periodontol 38:610–616 (Suppl)

    PubMed  Google Scholar 

  24. Luterbacher S, Mayfield L, Bragger U, Lang NP (2000) Diagnostic characteristics of clinical and microbiological tests for monitoring periodontal and peri-implant mucosal tissue conditions during supportive periodontal therapy (SPT). Clin Oral Implants Res 11:521–529

    Article  PubMed  Google Scholar 

  25. Matarasso S, Quaremba G, Coraggio F, Vaia E, Cafiero C, Lang NP (1996) Maintenance of implants: an in vitro study of titanium implant surface modifications, subsequent to the application of different peophylaxis procedures. Clin Oral Implants Res 7:64–72

    Article  PubMed  Google Scholar 

  26. Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I (2003) Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg 21:7–17

    Article  PubMed  Google Scholar 

  27. Mombelli A (2002) Microbiology and antimicrobial therapy of peri-implantitis. Periodontol 2000 28:177–189

    Article  PubMed  Google Scholar 

  28. Mombelli A, Lang NP (1992) Antimicrobial treatment of peri-implant infections. Clin Oral Implants Res 3:162–168

    Article  PubMed  Google Scholar 

  29. Mombelli A, Lang NP (1994) Microbial aspects of implant dentistry. Periodontol 2000 4:74–80

    PubMed  Google Scholar 

  30. Persson LG, Berglundh T, Lindhe J, Sennerby L (2001) Re-osseointegration after treatment of peri-implantitis at different implant surfaces. An experimental study in the dog. Clin Oral Implants Res 12:595–603

    Article  PubMed  Google Scholar 

  31. Porras R, Anderson GB, Caffesse R, Narendran S, Trejo PM (2002) Clinical response to 2 different therapeutic regimens to treat peri-implant mucositis. J Periodontol 73:1118–1125

    Article  PubMed  Google Scholar 

  32. Quirynen M, De Soete M, van Steenberghe D (2002) Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res 13:1–19

    Article  PubMed  Google Scholar 

  33. Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71:810–815

    Article  PubMed  Google Scholar 

  34. Rühling A, Kocher T, Kreusch J, Plagmann HC (1994) Treatment of subgingival implant surfaces with Teflon-coated sonic and ultrasonic scaler tips and various implant curettes. An in vitro study. Clin Oral Implants Res 5:19–29

    Article  PubMed  Google Scholar 

  35. Schou S, Berglundh T, Lang NP (2004) Surgical treatment of peri-implantitis. Int J Oral Maxillofac Implants 19:140–149 (Suppl)

    PubMed  Google Scholar 

  36. Schwarz F, Rothamel D, Becker J (2003) Influence of an Er:YAG laser on the surface structure of titanium implants. Schweiz Monatsschr Zahnmed 113:660–671

    PubMed  Google Scholar 

  37. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the Vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792

    Article  PubMed  Google Scholar 

  38. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J (2003) In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 32:359–366

    Article  PubMed  Google Scholar 

  39. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, Scherbaum W, Becker J (2005) Influence of different treatment approaches on the removal of early plaque biofilms and the viability of SAOS2 osteoblasts grown on titanium implants. Clin Oral Investig 9:111–117

    Article  PubMed  Google Scholar 

  40. Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J (2005) Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16:44–52

    Article  PubMed  Google Scholar 

  41. Schwarz F, Bieling K, Venghaus S, Sculean A, Jepsen S, Becker J (2006) Influence of fluorescence-controlled Er:YAG laser radiation, the Vector system and hand instruments on periodontally diseased root surfaces in vivo. J Clin Periodontol 33:200–208

    Article  PubMed  Google Scholar 

  42. Schwarz F, Papanicolau P, Rothamel D, Beck B, Herten M, Becker J (2006) Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res A 774A:437–444

    Google Scholar 

  43. Sculean A, Schwarz F, Becker J (2005) Anti-infective therapy with an Er:YAG laser: influence on peri-implant healing. Expert Rev Med Devices 2:267–276

    Article  PubMed  Google Scholar 

  44. Sugi D, Fukuda M, Minoura S, Yamada Y, Tako J, Miwa K, Noguchi T, Nakashima K, Sobue T, Noguchi T (1998) Effects of irradiation of Er:YAG laser on quantity of endotoxin and microhardness of surface in exposed root after removal of calculus. Japanese Journal of Conservative Dentistry 41:1009–1017

    Google Scholar 

  45. Tonetti MS, Pini-Prato G, Cortellini P (1995) Effect of cigarette smoking on periodontal healing following GTR in infrabony defects. A preliminary retrospective study. J Clin Periodontol 22:229–234

    Article  PubMed  Google Scholar 

  46. Tucker D, Cobb CM, Rapley JW, Killoy WJ (1996) Morphologic changes following in vitro CO2 laser treatment of calculus-ladened root surfaces. Lasers Surg Med 18:150–156

    Article  PubMed  Google Scholar 

  47. Van de Velde E, Thielens P, Schautteet H, Vanclooster R (1991) Subcutaneous emphysema of the oral floor during cleaning of a bridge fixed on an IMZ implant. Case report. Rev Belge Med Dent 46:64–71

    PubMed  Google Scholar 

  48. Weigel C, Brägger U, Hämmerle CH, Mombelli A, Lang NP (1995) Maintenance of new attachment 1 and 4 years following guided tissue regeneration (GTR). J Clin Periodontol 22:661–669

    Article  PubMed  Google Scholar 

  49. Yamaguchi H, Kobayashi K, Osada R, Sakuraba E, Nomura T, Arai T, Nakamura J (1997) Effects of irradiation of an erbium:YAG laser on root surfaces. J Periodontol 68:1151–1155

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the “Arbeitsgemeinschaft für Kieferchirurgie innerhalb der Deutschen Gesellschaft für Zahn-, Mund- und Kieferheilkunde”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, F., Bieling, K., Bonsmann, M. et al. Nonsurgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study. Clin Oral Invest 10, 279–288 (2006). https://doi.org/10.1007/s00784-006-0070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-006-0070-3

Keywords

Navigation