Skip to main content
Log in

Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action

  • Mini Review
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Increasing antimicrobial resistance is a clinical crisis worldwide. Recent progress in the field of green synthesis has fascinated scientists and researchers to explore its potentials against pathogenic microbes. Bioinspired-metal-based nanoparticles (silver, copper, gold, zinc, etc.) have been reported to be tested against both Gram-positive and Gram-negative bacteria such as B. subtilis, E. coli, Staphylococcus aureus, etc., as well as some pathogenic fungi including A. niger, F. oxysporum, A. fumigatus, etc., and are testified to exhibit inhibitory effects against pathogenic microbes. The possible modes of action of these metal nanoparticles include: (a) excess production of reactive oxygen species inside microbes; (b) disruption of vital enzymes in respiratory chain via damaging microbial plasma membranes; (c) accumulation of metal ions in microbial membranes; (d) electrostatic attraction between metal nanoparticles and microbial cells which disrupt metabolic activities; and (e) inhibition of microbial proteins/enzymes by increased production of H2O2. Although these pathways are interconnected, information on potential mechanism of most of these biogenic nanoparticles is still limited. Further exploration of these mechanisms could help in tackling the burning issue of antibiotics resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thakkar KN, Mhatre SS, Parikh RY (2010) Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  2. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Small 7:425–443

    Article  CAS  PubMed  Google Scholar 

  3. Parveen K, Banse V, Ledwani L (2016) AIP conference proceedings. AIP Publishing, New York, p 020048

    Google Scholar 

  4. Li X, Xu H, Chen Z-S, Chen G (2011) J Nanomater 2011(270974):1–16

    Google Scholar 

  5. Gao W, Thamphiwatana S, Angsantikul P, Zhang L (2014) Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:532–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grass G, Rensing C, Solioz M (2011) Appl Environ Microbiol 77:1541–1547

    Article  CAS  PubMed  Google Scholar 

  7. Wilson BA, Salyers AA, Whitt DD, Winkler ME (2011) Bacterial pathogenesis: a molecular approach. American Society for Microbiology (ASM), Washington, D.C.

    Book  Google Scholar 

  8. Kaviyarasu K, Geetha N, Kanimozhi K, Magdalane CM, Sivaranjani S, Ayeshamariam A, Maaza M (2017) Mater Sci Eng C 74:325–333

    Article  CAS  Google Scholar 

  9. Kaviyarasu K, Magdalane CM, Kanimozhi K, Kennedy J, Siddhardha B, Reddy ES, Mola GT (2017) J Photochem Photobiol B 173:466–475

    Article  CAS  PubMed  Google Scholar 

  10. Kaviyarasu K, Kanimozhi K, Matinise N, Magdalane CM, Mola GT, Kennedy J, Maaza M (2017) Mater Sci Eng C 76:1012–1025

    Article  CAS  Google Scholar 

  11. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  12. Lakshmanan G, Sathiyaseelan A, Kalaichelvan P, Murugesan K (2018) Karbala Int J Mod Sci 4:61–68

    Article  Google Scholar 

  13. Sur UK, Ankamwar B, Karmakar S, Halder A, Das P (2018) Mater Today Proc 5:2321–2329

    Article  CAS  Google Scholar 

  14. Ojo OA, Oyinloye BE, Ojo AB, Afolabi OB, Peters OA, Olaiya O, Fadaka A, Jonathan J, Osunlana O (2017) J Bionanosci 11:292–296

    Article  CAS  Google Scholar 

  15. Singh P, Kim YJ, Yang DC (2016) Artif Cells Nanomed Biotechnol 44:1949–1957

    Article  CAS  PubMed  Google Scholar 

  16. Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) J Colloid Interface Sci 472:145–156

    Article  CAS  PubMed  Google Scholar 

  17. Ibrahim HM (2015) J Radiat Res Appl Sci 8:265–275

    Article  Google Scholar 

  18. Gomathi M, Rajkumar P, Prakasam A, Ravichandran K (2017) Resour Effic Technol 3:280–284

    Article  Google Scholar 

  19. Narendhran S, Sivaraj R (2016) Bull Mater Sci 39:1–5

    Article  CAS  Google Scholar 

  20. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) J Radiat Res Appl Sci 9:1–7

    Article  CAS  Google Scholar 

  21. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2017) Arab J Chem 10:862–876

    Article  CAS  Google Scholar 

  22. Escárcega-González CE, Garza-Cervantes J, Vázquez-Rodríguez A, Montelongo-Peralta LZ, Treviño-González M, Castro EDB, Saucedo-Salazar E, Morales RC, Soto DR, González FT (2018) Int J Nanomed 13:2349

    Article  Google Scholar 

  23. Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R (2018) Pharmacogn Mag 13:S840

    PubMed  PubMed Central  Google Scholar 

  24. Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan P, Mohan N (2010) Colloids Surf B 76:50–56

    Article  CAS  Google Scholar 

  25. Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Arab J Chem 10:S3029–S3039

    Article  CAS  Google Scholar 

  26. Bindhu M, Umadevi M (2014) Mater Lett 120:122–125

    Article  CAS  Google Scholar 

  27. Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S (2015) BioNanoScience 5:135–139

    Article  Google Scholar 

  28. Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) J Taibah Univ Sci 9:7–12

    Article  Google Scholar 

  29. Shende S, Ingle AP, Gade A, Rai M (2015) World J Microbiol Biotechnol 31:865–873

    Article  CAS  PubMed  Google Scholar 

  30. Dobrucka R, Długaszewska J (2016) Saudi J Biol Sci 23:517–523

    Article  CAS  PubMed  Google Scholar 

  31. Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 129:255–258

    Article  CAS  Google Scholar 

  32. Elumalai K, Velmurugan S (2015) Appl Surf Sci 345:329–336

    Article  CAS  Google Scholar 

  33. Sundrarajan M, Ambika S, Bharathi K (2015) Adv Powder Technol 26:1294–1299

    Article  CAS  Google Scholar 

  34. Gunalan S, Sivaraj R, Rajendran V (2012) Prog Nat Sci Mater Int 22:693–700

    Article  Google Scholar 

  35. Jamdagni P, Khatri P, Rana J (2018) J King Saud Univ Sci 30:168–175

    Article  Google Scholar 

  36. Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 137:886–891

    Article  CAS  Google Scholar 

  37. Chandirika JU, Annadurai G (2018) Glob J Biotechnol Biochem 13:07–11

    CAS  Google Scholar 

  38. Besinis A, De Peralta T, Handy RD (2014) Nanotoxicology 8:1–16

    Article  CAS  PubMed  Google Scholar 

  39. Lemire JA, Harrison JJ, Turner RJ (2013) Nat Rev Microbiol 11:371

    Article  CAS  PubMed  Google Scholar 

  40. Gold K, Slay B, Knackstedt M, Gaharwar AK (2018) Adv Ther 1:1700033

    Article  CAS  Google Scholar 

  41. Jeon H-J, Yi S-C, Oh S-G (2003) Biomaterials 24:4921–4928

    Article  CAS  PubMed  Google Scholar 

  42. Klueh U, Wagner V, Kelly S, Johnson A, Bryers J (2000) J Biomed Mater Res 53:621–63143

    Article  CAS  PubMed  Google Scholar 

  43. Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J, Khatiwada CP, Kaviyarasu K, Swaminathan M (2018) J Photochem Photobiol B Biol 181:53–58

    Article  CAS  Google Scholar 

  44. Magdalane CM, Kaviyarasu K, Raja A, Arularasu MV, Mola GT, Isaev AB, Maaza M (2018) J Photochem Photobiol B 185:275–282

    Article  CAS  Google Scholar 

  45. Amanulla AM, Shahina SJ, Sundaram R, Magdalane CM, Kaviyarasu K, Letsholathebe D, Maaza M (2018) J Photochem Photobiol B 183:233–241

    Article  CAS  Google Scholar 

  46. Roy S, Das T (2015) J Appl Spectrosc 82:598–606

    Article  CAS  Google Scholar 

  47. Kumar DA, Palanichamy V, Roopan SM (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 127:168–171. https://doi.org/10.1016/j.saa.2014.02.058

    Article  CAS  Google Scholar 

  48. Ahmad N, Sharma S, Singh V, Shamsi S, Fatma A, Mehta B (2011) Biotechnol Res Int 2011(454090):1–8

    Article  CAS  Google Scholar 

  49. Anbazhagan S, Azeez S, Morukattu G, Rajan R, Venkatesan K, Thangavelu KP (2017) 3 Biotech 7:333

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nanda A, Saravanan M (2009) Nanomed Nanotechnol Biol Med 5:452–456. https://doi.org/10.1016/j.nano.2009.01.012

    Article  CAS  Google Scholar 

  51. Maiti S, Krishnan D, Barman G, Ghosh SK, Laha JK (2014) J Anal Sci Technol 5:40

    Article  Google Scholar 

  52. Xia Z-K, Ma Q-H, Li S-Y, Zhang D-Q, Cong L, Tian Y-L, Yang R-Y (2016) J Microbiol Immunol Infect 49:182–188

    Article  CAS  PubMed  Google Scholar 

  53. Prabhu S, Poulose EK (2012) Int Nano Lett 2:32

    Article  Google Scholar 

  54. Sondi I, Salopek-Sondi B (2004) J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  55. Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Spectrochim Acta Part A Mol Biomol Spectrosc 63:189–19157

    Article  CAS  Google Scholar 

  56. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Roy S (2017) Arab J Chem 10(6):862–876

    Article  CAS  Google Scholar 

  57. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Nanotechnology 18:225103

    Article  CAS  Google Scholar 

  58. Kim J, Lee J, Kwon S, Jeong S (2009) J Nanosci Nanotechnol 9:1098–1102

    Article  CAS  PubMed  Google Scholar 

  59. Du H, Lo T-M, Sitompul J, Chang MW (2012) Biochem Biophys Res Commun 424:657–662

    Article  CAS  PubMed  Google Scholar 

  60. Huang S-H (2006) Clin Chim Acta 373:139–143

    Article  CAS  PubMed  Google Scholar 

  61. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Colloids Surf B Biointerfaces 85:360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  62. Vijayan R, Joseph S, Mathew B (2018) Artif Cells Nanomed Biotechnol 46:861–871

    Article  CAS  PubMed  Google Scholar 

  63. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Ind Crops Prod 45:423–429

    Article  CAS  Google Scholar 

  64. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) Biomaterials 33:2327–2333

    Article  CAS  PubMed  Google Scholar 

  65. Carbon J, David H, Studier MH (1968) Science 161:1146–1147

    Article  CAS  PubMed  Google Scholar 

  66. Zharova TV, Vinogradov AD (2004) J Biol Chem 279:12319–12324

    Article  CAS  PubMed  Google Scholar 

  67. Wani IA, Ahmad T (2013) Colloids Surf B 101:162–170

    Article  CAS  Google Scholar 

  68. Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Al-Shihri AS (2013) Mater Res Bull 48(1):12–20

    Article  CAS  Google Scholar 

  69. Tan YN, Lee KH, Su X (2011) Anal Chem 83:4251–4257

    Article  CAS  PubMed  Google Scholar 

  70. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Spectrochim Acta Part A Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  71. Szabó T, Németh J, Dékány I (2003) Colloids Surf A 230:23–35

    Article  CAS  Google Scholar 

  72. Espitia PJP, Soares NDFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  73. Neethirajan S, Jayas DS (2011) Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  74. Jones N, Ray B, Ranjit KT, Manna AC (2008) FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  75. Jin T, Gurtler J (2011) J Appl Microbiol 110:704–712

    Article  CAS  PubMed  Google Scholar 

  76. Seil JT, Webster TJ (2011) Acta Biomater 7:2579–2584

    Article  CAS  PubMed  Google Scholar 

  77. Vicentini DS, Smania A Jr, Laranjeira MC (2010) Mater Sci Eng C 30:503–508

    Article  CAS  Google Scholar 

  78. Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S (2011) Colloids Surf A 374:1–8

    Article  CAS  Google Scholar 

  79. Rajiv P, Rajeshwari S, Venckatesh R (2013) Spectrochim Acta Part A Mol Biomol Spectrosc 112:384–387

    Article  CAS  Google Scholar 

  80. Patel S (2011) 3 Biotech 1(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. He L, Liu Y, Mustapha A, Lin M (2011) Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  82. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Appl Environ Microbiol 77:2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Abbasi BH, Anjum S, Hano C (2017) RSC Adv 7(26):15931–15943

    Article  CAS  Google Scholar 

  84. Huang Z, Cui F, Kang H, Chen J, Zhang X, Xia C (2008) Chem Mater 20:5090–5099

    Article  CAS  Google Scholar 

  85. Yehia RS, Ahmed OF (2013) Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  86. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  87. Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS (2011) Nanotechnology 1:371–374

    CAS  Google Scholar 

  88. Ahamed M, Alhadlaq HA, Khan M, Karuppiah P, Al-Dhabi NA (2014) J Nanomater 2014:17

    Article  CAS  Google Scholar 

  89. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  90. Quirós J, Gonzalo S, Jalvo B, Boltes K, Perdigón-Melón JA, Rosal R (2016) Sci Total Environ 563:912–920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, P., Ali, N., Rahman, L. et al. Antimicrobial activities of biologically synthesized metal nanoparticles: an insight into the mechanism of action. J Biol Inorg Chem 24, 929–941 (2019). https://doi.org/10.1007/s00775-019-01717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01717-7

Keywords

Navigation