Skip to main content
Log in

Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The very high antiproliferative activity of [Co(Cl)(H2O)(phendione)2][BF4] (phendione is 1,10-phenanthroline-5,6-dione) against three human tumor cell lines (half-maximal inhibitory concentration below 1 μM) and its slight selectivity for the colorectal tumor cell line compared with healthy human fibroblasts led us to explore the mechanisms of action underlying this promising antitumor potential. As previously shown by our group, this complex induces cell cycle arrest in S phase and subsequent cell death by apoptosis and it also reduces the expression of proteins typically upregulated in tumors. In the present work, we demonstrate that [Co(Cl)(phendione)2(H2O)][BF4] (1) does not reduce the viability of nontumorigenic breast epithelial cells by more than 85 % at 1 μM, (2) promotes the upregulation of proapoptotic Bax and cell-cycle-related p21, and (3) induces release of lactate dehydrogenase, which is partially reversed by ursodeoxycholic acid. DNA interaction studies were performed to uncover the genotoxicity of the complex and demonstrate that even though it displays K b (± standard error of the mean) of (3.48 ± 0.03) × 105 M−1 and is able to produce double-strand breaks in a concentration-dependent manner, it does not exert any clastogenic effect ex vivo, ruling out DNA as a major cellular target for the complex. Steady-state and time-resolved fluorescence spectroscopy studies are indicative of a strong and specific interaction of the complex with human serum albumin, involving one binding site, at a distance of approximately 1.5 nm for the Trp214 indole side chain with log K b ~4.7, thus suggesting that this complex can be efficiently transported by albumin in the blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hannon MJ (2007) Pure Appl Chem 2243–2261

  2. Meggers E (2009) Chem Commun 1001–1010. doi:10.1039/b813568a

  3. Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481–489

    Article  CAS  PubMed  Google Scholar 

  4. Cantero G, Pastor N, Mateos S, Campanella C, Cortes F (2006) Mutat Res 599:160–166. doi:10.1016/j.mrfmmm.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  5. Zeglis BM, Pierre VC, Barton JK (2007) Chem Commun 4565–4579. doi:10.1039/b710949k

  6. Williams NH, Takasaki B, Wall M, Chin J (1999) Acc Chem Res 32:485–493

    Article  CAS  Google Scholar 

  7. Jiang Q, Xiao N, Shi PF, Zhu YG, Guo ZJ (2007) Coord Chem Rev 251:1951–1972. doi:10.1016/j.ccr.2007.02.013

    Article  CAS  Google Scholar 

  8. Pasini A, Zunino F (1987) Angew Chem Int Ed Engl 26:615–624. doi:10.1002/anie.198706151

    Article  Google Scholar 

  9. Barton JK (1986) Science 233:727–734

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Cai X, Rivas G, Shiraishi H, Farias PA, Dontha N (1996) Anal Chem 68:2629–2634

    Article  CAS  PubMed  Google Scholar 

  11. Wheate NJ, Brodie CR, Collins JG, Kemp S, Aldrich-Wright JR (2007) Mini Rev Med Chem 7(6):627–648

    Article  CAS  PubMed  Google Scholar 

  12. Cusumano M, Di Pietro ML, Giannetto A (2006) Inorg Chem 45:230–235. doi:10.1021/ic050880o

    Article  CAS  PubMed  Google Scholar 

  13. Liu HK, Sadler PJ (2011) Acc Chem Res 44(5):349–359. doi:10.1021/ar100140e

    Google Scholar 

  14. Dhar S, Senapati D, Das PK, Chattopadhyay P, Nethaji M, Chakravarty AR (2003) J Am Chem Soc 125:12118–12124. doi:10.1021/ja036681q

    Article  CAS  PubMed  Google Scholar 

  15. Patra AK, Dhar S, Nethaji M, Chakravarty AR (2003) Chem Commun 1562–1563

  16. Reddy PA, Santra BK, Nethaji M, Chakravarty AR (2004) J Inorg Biochem 98:377–386

    Article  CAS  PubMed  Google Scholar 

  17. Ranford JD, Sadler PJ, Tocher DA (1993) J Chem Soc Dalton Trans 3393–3399. doi:10.1039/DT9930003393

  18. Bruijnincx PC, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206. doi:10.1016/j.cbpa.2007.11.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gabbiani C (2009) Proteins as possible targets for antitumor metal complexes. Biophysical studies of their interactions. Firenze University Press, Florence

    Google Scholar 

  20. Hernandes MZ, Pontes FJ de S, Coelho LCD, Moreira DRM, Pereira VRA, Leite ACL (2010) Curr Med Chem 17:3739–3750

  21. Pessoa JC, Tomaz I (2010) Curr Med Chem 17:3701–3738

    Article  CAS  PubMed  Google Scholar 

  22. US Food and Drug Administration (2006) Requirements on content and format of labeling for human prescription drug and biological products, section 12: clinical pharmacology, subsection 12.3: pharmacokinetics, p 262. http://www.fda.gov/OHRMS/DOCKETS/98fr/00n-1269-nfr0001-03.pdf

  23. Colmenarejo G (2003) Med Res Rev 23:275–301. doi:10.1002/med.10039

    Article  CAS  PubMed  Google Scholar 

  24. Kratz F (2008) J Control Release 132:171–183. doi:10.1016/j.jconrel.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  25. Maeda H (2010) Bioconjug Chem 21:797–802. doi:10.1021/bc100070g

    Article  CAS  PubMed  Google Scholar 

  26. Silva TFS, Smoleński P, Martins LMDRS, Guedes da Silva MFC, Fernandes AR, Luis D, Silva A, Santos S, Borralho PM, Rodrigues CMP, Pombeiro AJL (2013) Eur J Inorg Chem 2013:3651–3658. doi:10.1002/ejic.201300197

    Article  CAS  Google Scholar 

  27. Silva A, Luis D, Santos S, Silva J, Mendo AS, Coito L, Silva TF, da Silva MF, Martins LM, Pombeiro AJ, Borralho PM, Rodrigues CM, Cabral MG, Videira PA, Monteiro C, Fernandes AR (2013) Drug Metab Drug Interact 28:167–176. doi:10.1515/dmdi-2013-0015

    CAS  Google Scholar 

  28. Heintz RA, Smith JA, Szalay PS, Weisgerber A, Dunbar KR (2002) In: Coucouvanis D (ed) Inorganic synthesis, vol 33. Wiley, New York, pp 75–107

  29. Silva TFS, Martins LMDRS, Guedes da Silva MFC, Fernandes AR, Silva A, Borralho PM, Santos S, Rodrigues CMP, Pombeiro AJL (2012) Dalton Trans 41:12888–12897. doi:10.1039/C2DT11577H

    Article  CAS  PubMed  Google Scholar 

  30. Schmittgen TD, Livak KJ (2008) Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Liu J, Li Q (2010) Mol Carcinog 49:566–581. doi:10.1002/mc.20623

    CAS  PubMed  Google Scholar 

  32. Rahman KW, Li Y, Wang Z, Sarkar SH, Sarkar FH (2006) Cancer Res 66:4952–4960. doi:10.1158/0008-5472.CAN-05-3918

    Article  CAS  PubMed  Google Scholar 

  33. Kanakis CD, Tarantilis PA, Polissiou MG, Diamantoglou S, Tajmir-Riahi HA (2007) Cell Biochem Biophys 49:29–36

    Article  CAS  PubMed  Google Scholar 

  34. Conde J, Larguinho M, Cordeiro A, Raposo LR, Costa PM, Santos S, Diniz MS, Fernandes AR, Baptista PV (2014) Nanotoxicology 8:521–532

    Google Scholar 

  35. Jakusch T, Hollender D, Enyedy EA, Gonzalez CS, Montes-Bayon M, Sanz-Medel A, Costa Pessoa J, Tomaz I, Kiss T (2009) Dalton Trans 2428–2437. doi:10.1039/B817748A

  36. Valeur B (2001) Molecular fluorescence. Wiley-VCH, Weinheim, pp 155–199

  37. Hampton MB, Orrenius S (1997) FEBS Lett 414:552–556

    Article  CAS  PubMed  Google Scholar 

  38. Dosa PI, Ward T, Castro RE, Rodrigues CM, Steer CJ (2013) ChemMedChem 8:1002–1011. doi:10.1002/cmdc.201300059

    Article  CAS  PubMed  Google Scholar 

  39. Takaki K, Higuchi Y, Hashii M, Ogino C, Shimizu N (2013) J Biosci Bioeng. doi:10.1016/j.jbiosc.2013.06.003

    PubMed  Google Scholar 

  40. Tang HL, Yuen KL, Tang HM, Fung MC (2009) Br J Cancer 100:118–122. doi:10.1038/sj.bjc.6604802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Xie X, Wang S, Wong TC, Fung M (2013) Cancer Cell Int 13:63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Amaral JD, Castro RE, Steer CJ, Rodrigues CM (2009) Trends Mol Med 15:531–541. doi:10.1016/j.molmed.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  43. Amaral JD, Castro RE, Sola S, Steer CJ, Rodrigues CM (2007) J Biol Chem 282:34250–34259. doi:10.1074/jbc.M704075200

    Article  CAS  PubMed  Google Scholar 

  44. Taguchi T, Kato Y, Baba Y, Nishimura G, Tanigaki Y, Horiuchi C, Mochimatsu I, Tsukuda M (2004) Oncol Rep 11:421–426

    CAS  PubMed  Google Scholar 

  45. Gartel AL, Tyner AL (2002) Mol Cancer Ther 1:639–649

    CAS  PubMed  Google Scholar 

  46. Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M (2011) Dalton Trans 40:3245–3256. doi:10.1039/c0dt01360a

    Article  CAS  PubMed  Google Scholar 

  47. Karidi K, Garoufis A, Tsipis A, Hadjiliadis N, den Dulk H, Reedijk J (2005) Dalton Trans 1176–1187. doi:10.1039/b418838a4

  48. Babu MSS, Reddy KH, Krishna PG (2007) Polyhedron 26:572–580. doi:10.1016/j.poly.2006.08.026

    Article  CAS  Google Scholar 

  49. Modica-Napolitano JS, Aprille JR (2001) Adv Drug Deliv Rev 49:63–70

    Article  CAS  PubMed  Google Scholar 

  50. Obe G, Johannes C, Ritter S (2010) Mutat Res 701:3–11. doi:10.1016/j.mrgentox.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  51. Jung Y, Lippard J (2007) Chem Rev 107:1387–1407

    Article  CAS  PubMed  Google Scholar 

  52. Matos CP, Valente A, Marques F, Adão P, Paula Robalo M, de Almeida RFM, Pessoa JC, Santos I, Helena Garcia M, Tomaz AI (2013) Inorg Chim Acta 394:616–626. doi:10.1016/j.ica.2012.09.026

    Article  CAS  Google Scholar 

  53. Demoro B, de Almeida RFM, Marques F, Matos CP, Otero L, Costa Pessoa J, Santos I, Rodriguez A, Moreno V, Lorenzo J, Gambino D, Tomaz AI (2013) Dalton Trans 42:7131–7146. doi:10.1039/C3DT00028A

    Article  CAS  PubMed  Google Scholar 

  54. Rohacova J, Marin ML, Miranda MA (2010) J Phys Chem B 114:4710–4716. doi:10.1021/jp911114n

    Article  CAS  PubMed  Google Scholar 

  55. Honore B, Pedersen AO (1989) Biochem J 258:199–204

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Loura LM, de Almeida RF, Coutinho A, Prieto M (2003) Chem Phys Lipids 122:77–96

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this work was financed by Portuguese national funds through FCT, the Portuguese Foundation for Science and Technology, within the scope of projects PTDC/QuiQui/101187/2008, PEst-OE/QUI/UI0612/2013, and PEst-OE/QUI/UI0536/2013, as well as Ciência2008 and Investigator FCT-POPH initiatives. We thank Ana C. Silva for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra R. Fernandes.

Additional information

D.V. Luís and J. Silva contributed equally to this work.

Electronic supplementary material

Spectroscopic data for doxorubicin–DNA and complex–HSA interactions and restriction analysis of base-specific complex–DNA interaction, comet assay, T4 DNA ligation assay, and viability assay on a nontumor human cell line.

Supplementary information (PDF 1633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luís, D.V., Silva, J., Tomaz, A.I. et al. Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies. J Biol Inorg Chem 19, 787–803 (2014). https://doi.org/10.1007/s00775-014-1110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-014-1110-0

Keywords

Navigation