Skip to main content
Log in

Identification of [CuCl(acac)(tmed)], a copper(II) complex with mixed ligands, as a modulator of Cu,Zn superoxide dismutase (Sod1p) activity in yeast

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Superoxide dismutases (SODs) stand in the prime line of enzymatic antioxidant defense in nearly all eukaryotic cells exposed to oxygen, catalyzing the breakdown of the superoxide anionic radical to O2 and H2O2. Overproduction of superoxide correlates with numerous pathophysiological conditions, and although the native enzyme can be used as a therapeutic agent in superoxide-associated conditions, synthetic low molecular weight mimetics are preferred in terms of cost, administration mode, and bioavailability. In this study we make use of the model eukaryote Saccharomyces cerevisiae to investigate the SOD-mimetic action of a mononuclear mixed-ligand copper(II) complex, [CuCl(acac)(tmed)] (where acac is acetylacetonate anion and tmed is N,N,N′,N′-tetramethylethylenediamine). Taking advantage of an easily reproducible phenotype of yeast cells which lack Cu–Zn SOD (Sod1p), we found that the compound could act either as a superoxide scavenger in the absence of native Sod1p or as a Sod1p modulator which behaved differently under various genetic backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

acac:

Acetylacetonate anion

Cu,Zn-SOD:

Copper- and zinc-containing superoxide dismutase

MES:

2-(N-Morpholino)ethanesulfonic acid

Mn-SOD:

Manganese-containing superoxide dismutase

MOPS:

3-(N-Morpholino)propanesulfonic acid

NBT:

Nitro blue tetrazolium

OD600 :

Optical density of the cellular suspension at 600 nm

PQ:

Paraquat

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SD:

Synthetic complete medium containing 2 % dextrose

SD-K:

Synthetic complete medium containing 2 % dextrose lacking lysine

tmed:

N,N,N′,N′-Tetramethylethylenediamine

Tris:

Tris(hydroxymethyl)methylamine

YPD:

Yeast extract–peptone–dextrose

References

  1. Longo VD, Gralla EB, Valentine JS (1996) J Biol Chem 271:12275–12280

    Article  PubMed  CAS  Google Scholar 

  2. Valentine JS, Wertz DL, Lyons TJ, Liou LL, Goto JJ, Gralla EB (1998) Curr Opin Chem Biol 2:253–262

    Article  PubMed  CAS  Google Scholar 

  3. Fridovich I (1978) Science 201:875–880

    Article  PubMed  CAS  Google Scholar 

  4. Emerit J, Michelson AM (1982) Sem Hop 58:2670–2675

    PubMed  CAS  Google Scholar 

  5. Stadtman ER (1993) Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  6. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (2007) Free Radic Biol Med 43:477–503

    Article  PubMed  CAS  Google Scholar 

  7. Finkel T (2003) Curr Opin Cell Biol 15:247–254

    Article  PubMed  CAS  Google Scholar 

  8. Liu H, Colavitti R, Rovira II, Finkel T (2005) Circ Res 97:967–974

    Article  PubMed  CAS  Google Scholar 

  9. McCord JM, Edeas MA (2005) Biomed Pharmacother 59:139–142

    Article  PubMed  CAS  Google Scholar 

  10. McCord JM, Fridovich I (1969) J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  11. Weisiger RA, Fridovich I (1973) J Biol Chem 248:4793–4796

    PubMed  CAS  Google Scholar 

  12. Halliwell B, Gutteridge JMC (1985) In: Baum H, Gergely J, Fanburg BL (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 89–193

  13. Mc Cord JM (1974) Science 185:529–531

    Google Scholar 

  14. Maxwell SR (1995) Drugs 49:345–361

    Article  PubMed  CAS  Google Scholar 

  15. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Joint Bone Spine 74:324–329

    Article  PubMed  CAS  Google Scholar 

  16. Levin ED (2005) Curr Alzheimer Res 2:191–196

    Article  PubMed  CAS  Google Scholar 

  17. Pong K (2003) Expert Opin Biol Ther 3:127–139

    Article  PubMed  CAS  Google Scholar 

  18. Muscoli C, Cuzzocrea S, Riley DP, Zweier JL, Thiemermann C, Wnag ZQ, Salvemini D (2003) Br J Pharmacol 140:445–460

    Article  PubMed  CAS  Google Scholar 

  19. Emerit J, Pelletier S, Likforman J, Pasquier C, Thuillier A (1991) Free Radic Res Commun 12–13:563–569

    Article  PubMed  Google Scholar 

  20. Rao VS, Goldstein S, Czapski G (1991) Free Radic Res Commun 12–13:67–73

    Article  PubMed  Google Scholar 

  21. Batinić-Haberle I, Rebouças JS, Spasojević I (2010) Antioxid Redox Signal 13:877–918

    Article  PubMed  Google Scholar 

  22. Saczewski F, Dziemidowicz-Borys E, Bednarski PJ, Gdaniec M (2007) Arch Pharm (Weinheim) 340:333–338

    Article  CAS  Google Scholar 

  23. Barik A, Mishra B, Kunwar A, Kadam RM, Shen L, Dutta S, Padhye S, Satpati AK, Zhang HY, Priyadarsini KI (2007) Eur J Med Chem 42:431–439

    Article  PubMed  CAS  Google Scholar 

  24. Fujimori T, Yamada S, Yasui H, Sakurai H, In Y, Ishida T (2005) J Biol Inorg Chem 10:831–841

    Article  PubMed  CAS  Google Scholar 

  25. Schepetkin I, Potapov A, Khlebnikov A, Korotkova E, Lukina A, Malovichko G, Kirpotina L, Quinn MT (2006) J Biol Inorg Chem 11:499–513

    Article  PubMed  CAS  Google Scholar 

  26. Pettinari C, Pettinari R (2005) Coord Chem Rev 249:663–691

    Article  CAS  Google Scholar 

  27. Gao F, Chao H, Zhou F, Yuan YX, Peng B, Ji LN (2006) J Inorg Biochem 100:1487–1494

    Article  PubMed  CAS  Google Scholar 

  28. Annaraj J, Srinivasan S, Ponvel KM, Athappan P (2005) J Inorg Biochem 99:669–676

    Article  PubMed  CAS  Google Scholar 

  29. Egner PA, Kensler TW (1985) Carcinogenesis 6:1167–1172

    Article  PubMed  CAS  Google Scholar 

  30. Potapov AS, Nudnova EA, Domina GA, Kirpotina LN, Quinn MT, Khlebnikov AI, Schepetkin IA (2009) Dalton Trans 23:4488–4498

    Article  PubMed  Google Scholar 

  31. Safavi M, Foroumadi A, Nakhjiri M, Abdollahi M, Shafiee A, Ilkhani H, Ganjali MR, Hosseinimehr SJ, Emami S (2010) Bioorg Med Chem Lett 20:3070–3073

    Article  PubMed  CAS  Google Scholar 

  32. Miriyala S, Spasojevic I, Tovmasyan A, Salvemini D, Vujaskovic Z (2012) St Clair D, Batinic-Haberle I. Biochim Biophys Acta 1822:794–814

    Article  PubMed  CAS  Google Scholar 

  33. Jamieson DJ (1998) Yeast 14:1511–1527

    Article  PubMed  CAS  Google Scholar 

  34. Carmel-Harel O, Storz G (2000) Annu Rev Microbiol 54:439–461

    Article  PubMed  CAS  Google Scholar 

  35. Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY (1992) Proc Natl Acad Sci USA 89:10405–10409

    Article  PubMed  CAS  Google Scholar 

  36. Weisiger RA, Fridovich I (1973) J Biol Chem 248:4793–4796

    PubMed  CAS  Google Scholar 

  37. Gralla EB, Kosman DJ (1992) Adv Genet 30:251–319

    Article  PubMed  CAS  Google Scholar 

  38. Culotta VC (2000) Curr Top Cell Regul 36:117–132

    Article  PubMed  CAS  Google Scholar 

  39. Sturtz LA, Culotta VC (2002) Methods Enzymol 349:167–172

    Article  PubMed  CAS  Google Scholar 

  40. Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC (1992) J Biol Chem 267:18298–18302

    PubMed  CAS  Google Scholar 

  41. Bermingham-McDonogh O, Gralla EB, Valentine JS (1988) Proc Natl Acad Sci USA 85:4789–4793

    Article  PubMed  CAS  Google Scholar 

  42. Bilinski T, Krawiec Z, Liczmanski A, Litwinska J (1985) Biochem Biophys Res Commun 130:533–539

    Article  PubMed  CAS  Google Scholar 

  43. Chang EC, Kosman DJ (1990) J Bacteriol 172:1840–1845

    PubMed  CAS  Google Scholar 

  44. Zyracka E, Zadrag R, Kozioł S, Krzepiłko A, Bartosz G, Biliński T (2005) Acta Biochim Pol 52:679–684

    PubMed  CAS  Google Scholar 

  45. Liochev SI, Fridovich I (2005) Free Radic Biol Med 38:146–147

    Article  PubMed  CAS  Google Scholar 

  46. Leitch JM, Yick PJ, Culotta VC (2009) J Biol Chem 284:24679–24683

    Article  PubMed  CAS  Google Scholar 

  47. Bastow EL, Gourlay CW, Tuite MF (2011) Biochem Soc Trans 39:1482–1487

    Article  PubMed  CAS  Google Scholar 

  48. De Vizcaya-Ruiz A, Rivero-Muller A, Ruiz-Ramirez L, Kass GEN, Kelland LR, Orr RM, Dobrota M (2000) Toxicol Vitr 14:1–5

    Article  Google Scholar 

  49. Garcia-Mora I, Ruiz-Ramírez L, Gómez-Ruiz C, Tinoco-Méndez M, Márquez-Quiñones A (2001) Metal Based Drugs 8:19–28

    Article  Google Scholar 

  50. Bravo-Gómez ME, García-Ramos JC, Garcia-Mora I, Ruiz-Azuara L (2009) J Inorg Biochem 103:299–309

    Article  PubMed  Google Scholar 

  51. Onawumi OOE, Odunola OA, Suresh E, Paul P (2011) Inorg Chem Commun 14:1626–1631

    Article  CAS  Google Scholar 

  52. Zhang L, Xu D, Xu Y, Gu J (1997) Acta Crystallogr C53:299–301

    CAS  Google Scholar 

  53. Gasque L, Moreno-Esparza R, Ruiz-Ramírez L, Medina-Dickinson G (1999) Acta Crystallogr C55:1063–1065

    CAS  Google Scholar 

  54. Huang R, Wallqvist A, Covell DG (2005) Biochem Pharmacol 69:1009–1039

    Article  PubMed  CAS  Google Scholar 

  55. Jalilehvand F, Ishii Y, Hidai M, Fukuda Y (1996) J Chem Soc Dalton Trans 3251–3256

  56. Socrates G (1994) Infrared and raman characteristic group frequencies: tables and charts. Wiley, Chichester

    Google Scholar 

  57. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Yeast 14:115–132

    Article  PubMed  CAS  Google Scholar 

  58. Sherman F (1991) Gurthie C, Fink GR (ed) Getting started with yeast. Methods in enzymology. Academic Press, Orlando

  59. Shitamukai A, Mizunuma M, Hirata D, Takahashi H, Miyakawa T (2000) Biosci Biotechnol Biochem 64:1942–1946

    Article  PubMed  CAS  Google Scholar 

  60. Flohe L, Otting F (1984) Methods Enzymol 105:93–104

    Article  PubMed  CAS  Google Scholar 

  61. Lapinskas PJ, Lin SJ, Culotta VC (1996) Mol Microbiol 21:519–528

    Article  PubMed  CAS  Google Scholar 

  62. Huang TT, Raineri I, Eggerding F, Epstein CJ (2005) Methods Enzymol 349:191–213

    Article  Google Scholar 

  63. Furukawa Y, Torres AS, O’Halloran TV (2004) EMBO J 23:2872–2881

    Article  PubMed  CAS  Google Scholar 

  64. Mulford KE, Fassler JS (2011) Eukaryot Cell 10:761–769

    Article  PubMed  CAS  Google Scholar 

  65. Lee J, Spector D, Godon C, Labarre J, Toledano MB (1999) J Biol Chem 274:4537–4544

    Article  PubMed  CAS  Google Scholar 

  66. Park SG, Cha M-K, Jeong W, Kim I-H (2000) J Biol Chem 275:5723–5732

    Article  PubMed  CAS  Google Scholar 

  67. Chae HZ, Chung SJ, Rhee SG (1994) J Biol Chem 269:27670–27678

    PubMed  CAS  Google Scholar 

  68. Iwai K, Naganuma A, Kuge S (2010) J Biol Chem 285:10597–10604

    Article  PubMed  CAS  Google Scholar 

  69. Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) J Biol Chem 272:23469–23472

    Article  PubMed  CAS  Google Scholar 

  70. Lee M, Hyun D, Halliwell B, Jenner P (2001) J Neurochem 76:998–1009

    Article  PubMed  CAS  Google Scholar 

  71. Pias EK, Ekshyyan OY, Rhoads CA, Fuseler J, Harrison L, Aw TY (2003) J Biol Chem 278:13294–13301

    Article  PubMed  CAS  Google Scholar 

  72. Wang P, Chen H, Qin H, Sankarapandi S, Becher MW, Wong PC, Zweier JL (1998) Proc Natl Acad Sci USA 95:4556–4560

    Article  PubMed  CAS  Google Scholar 

  73. Haque ME, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Neurosci Res 47:31–37

    Article  PubMed  CAS  Google Scholar 

  74. Celsi F, Ferri A, Casciati A, D’Ambrosi N, Rotilio G, Costa A, Volonte C, Carri MT (2004) Neurochem Int 44:25–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Iuliana Gruia for helpful discussion and technical assistance. This work was supported by the Ministry of Education and Research of Romania through the Grant-in-Aid PNII Idei_965, 176/2007, and by the postdoctoral program POSDRU/89/1.5/S/60746 of the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana C. Farcasanu.

Additional information

I. Dumitru and C.D. Ene contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitru, I., Ene, C.D., Ofiteru, A.M. et al. Identification of [CuCl(acac)(tmed)], a copper(II) complex with mixed ligands, as a modulator of Cu,Zn superoxide dismutase (Sod1p) activity in yeast. J Biol Inorg Chem 17, 961–974 (2012). https://doi.org/10.1007/s00775-012-0912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0912-1

Keywords

Navigation