Skip to main content
Log in

A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

High-resolution crystal structures of Pyrococcus furiosus rubrerythrin (PfRbr) in the resting (all-ferrous) state and at time points following exposure of the crystals to hydrogen peroxide are reported. This approach was possible because of the relativity slow turnover of PfRbr at room temperature. To this end, we were able to perform time-dependent peroxide treatment of the fully reduced enzyme, under strictly anaerobic conditions, in the crystalline state. In this work we demonstrate, for the first time, that turnover of a thermophilic rubrerythrin results in approximately 2-Å movement of one iron atom in the diiron site from a histidine to a carboxylate ligand. These results confirm that, despite the domain-swapped architecture, the hyperthermophilic rubrerythrins also utilize the classic combination of iron sites together with redox-dependent iron toggling to selectively reduce hydrogen peroxide over dioxygen. In addition, we have identified previously unobserved intermediates in the reaction cycle and observed structural changes that may explain the enzyme precipitation observed for the all-iron form of PfRbr upon oxidation to the all-ferric state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Massey V, Strickla S, Mayhew SG, Howell LG, Engel PC, Matthews RG, Schuman M, Sullivan PA (1969) Biochem Biophys Res Commun 36:891–897

    Google Scholar 

  2. Riebe O, Fischer RJ, Wampler DA, Kurtz DM Jr, Bahl H (2009) Microbiology 155:16–24

    Article  PubMed  CAS  Google Scholar 

  3. Imlay JA (2002) Adv Microb Physiol 46:111–153

    Article  PubMed  CAS  Google Scholar 

  4. Imlay JA (2002) J Biol Inorg Chem 7:659–663

    Article  PubMed  CAS  Google Scholar 

  5. Lumppio HL, Shenvi NV, Summers AO, Voordouw G, Kurtz DM Jr (2001) J Bacteriol 183:101–108

    Article  PubMed  CAS  Google Scholar 

  6. Jenney FE Jr, Verhagen MF, Cui X, Adams MW (1999) Science 286:306–309

    Google Scholar 

  7. Coulter ED, Kurtz DM Jr (2001) Arch Biochem Biophys 394:76–86

    Article  PubMed  CAS  Google Scholar 

  8. Coulter ED, Shenvi NV, Kurtz DM Jr (1999) Biochem Biophys Res Commun 255:317–323

    Article  PubMed  CAS  Google Scholar 

  9. Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM Jr (2002) Mol Microbiol 44:479–488

    Article  PubMed  CAS  Google Scholar 

  10. Alban PS, Popham DL, Rippere KE, Krieg NR (1998) J Appl Microbiol 85:875–882

    Article  PubMed  CAS  Google Scholar 

  11. Weinberg MV, Jenney FE Jr, Cui X, Adams MW (2004) J Bacteriol 186:7888–7895

    Article  PubMed  CAS  Google Scholar 

  12. May A, Hillmann F, Riebe O, Fischer RJ, Bahl H (2004) FEMS Microbiol Lett 238:249–254

    PubMed  CAS  Google Scholar 

  13. Kurtz DM Jr (2006) J Inorg Biochem 100:679–693

    Article  PubMed  CAS  Google Scholar 

  14. deMare F, Kurtz DM, Jr, Nordlund P (1996) Nat Struct Biol 3:539–546

    Article  PubMed  CAS  Google Scholar 

  15. Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC (2002) J Am Chem Soc 124:9845–9855

    Article  PubMed  CAS  Google Scholar 

  16. Iyer RB, Silaghi-Dumitrescu R, Kurtz DM Jr, Lanzilotta WN (2005) J Biol Inorg Chem 10:407–416

    Article  PubMed  CAS  Google Scholar 

  17. Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC (2004) J Inorg Biochem 98:786–796

    Article  PubMed  CAS  Google Scholar 

  18. Jin S, Kurtz DM Jr, Liu ZJ, Rose J, Wang BC (2004) Biochemistry 43:3204–3213

    Article  PubMed  CAS  Google Scholar 

  19. Pierik AJ, Wolbert RB, Portier GL, Verhagen MF, Hagen WR (1993) Eur J Biochem 212:237–245

    Article  PubMed  CAS  Google Scholar 

  20. Lumppio HL, Shenvi NV, Garg RP, Summers AO, Kurtz DM Jr (1997) J Bacteriol 179:4607–4615

    PubMed  CAS  Google Scholar 

  21. Bonomi F, Kurtz DM Jr, Cui X (1996) J Biol Inorg Chem 1:67–72

    Article  CAS  Google Scholar 

  22. Dave BC, Czernuszewicz RS, Prickril BC, Kurtz DM Jr (1994) Biochemistry 33:3572–3576

    Article  PubMed  CAS  Google Scholar 

  23. Gupta N, Bonomi F, Kurtz DM Jr, Ravi N, Wang DL, Huynh BH (1995) Biochemistry 34:3310–3318

    Article  PubMed  CAS  Google Scholar 

  24. Smoukov SK, Davydov RM, Doan PE, Sturgeon B, Kung IY, Hoffman BM, Kurtz DM Jr (2003) Biochemistry 42:6201–6208

    Article  PubMed  CAS  Google Scholar 

  25. Tempel W, Liu ZJ, Schubot FD, Shah A, Weinberg MV, Jenney FE Jr, Arendall WB 3rd, Adams MW, Richardson JS, Richardson DC, Rose JP, Wang BC (2004) Proteins 57:878–882. doi:10.1002/prot.20280

  26. Fushinobu S, Shoun H, Wakagi T (2003) Biochemistry 42:11707–11715. doi:10.1021/bi034220b

    Google Scholar 

  27. Wakagi T (2003) FEMS Microbiol Lett 222:33–37

    Google Scholar 

  28. Kurtz DM Jr, Prickril BC (1991) Biochem Biophys Res Commun 181:337–341

    Article  PubMed  CAS  Google Scholar 

  29. Kurtz DM Jr (1997) J Biol Inorg Chem 2:159–167

    Article  CAS  Google Scholar 

  30. Rinaldo D, Philipp DM, Lippard SJ, Friesner RA (2007) J Am Chem Soc 129:3135–3147. doi:10.1021/ja0654074

    Google Scholar 

  31. Otwinowski Z, Minor QW (1997) Methods Enzymol 276:307–326

    Google Scholar 

  32. Collaborative Computational Project, Number 4 (1994) Acta Crystallogr D Biol Crystallogr 50:760–763. doi:10.1107/S0907444994003112

    Google Scholar 

  33. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255. doi:10.1107/S0907444996012255

    Google Scholar 

  34. Brunger AT (2007) Nat Protoc 2:2728–2733. doi:10.1038/nprot.2007.406

  35. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF grant MCB 0835432 to W.N.L. and a grant (DE-FG05-95ER20175) to M.W.A. from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William N. Lanzilotta.

Additional information

An interactive 3D complement page in Proteopedia is available at http://proteopedia.org/wiki/index.php/Journal:JBIC-11-02-00042.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillard, B.D., Demick, J.M., Adams, M.W.W. et al. A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus . J Biol Inorg Chem 16, 949–959 (2011). https://doi.org/10.1007/s00775-011-0795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0795-6

Keywords

Navigation