Skip to main content
Log in

Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Typical peptides composed of Phe, Ile, and Arg residues have not been reported, and the effect of the helix-forming unit (HFU) composed of the tripeptide core on biological activity remains unclear. In this study, multimers of the 3-residue HFU were designed to investigate the structure–function relationships. The in vitro biological activities of the peptides were determined. We used synthetic lipid vesicles and intact bacteria to assess the interactions of the peptides with cell membranes. The well-studied peptide melittin was chosen as a control peptide. The results showed that the antimicrobial and hemolytic activities of the peptides increased with the number of HFUs. HFU3 had optimal cell selectivity as determined by the therapeutic index. HFU3 and HFU4 exhibited strong resistance to salts, pH, and heat. CD spectra revealed that the peptides except HFU2 displayed α-helix-rich secondary structures in the presence of SDS or trifluoroethanol (TFE). The peptides interacted weakly with zwitterionic phospholipids (mimicking mammalian membranes) but strongly with negatively charged phospholipids (mimicking bacterial membranes), which corresponds well with the data for the biological activities. There was a correlation between the cell selectivity of the peptides and their high binding affinity with negatively charged phospholipids. Cell membrane permeability experiments suggest that the peptides targeted the cell membrane, and HFU3 showed higher permeabilization of the inner membrane but lower permeabilization of the outer membrane than melittin. These findings provide the new insights to design antimicrobial peptides with antimicrobial potency by trimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

HFU:

Helix-forming unit

diSC3(5):

3-3-Dipropylthiadicarbocyanine-iodide

MHC:

Minimal hemolytic concentration

CD:

Circular dichroism

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

NPN:

N-phenyl-1-naphthylamine

Ksv:

Stern–Volmer quenching constant

MH:

Mueller–Hinton

References

  • Abbassi F, Lequin O, Piesse C, Goasdoué N, Foulon T, Nicolas P, Ladram A (2010) Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285:16880–16892

    Article  PubMed  CAS  Google Scholar 

  • Aliste MP, MacCallum JL, Tieleman DP (2003) Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-π interactions. Biochemistry 42:8976–8987

    Article  PubMed  CAS  Google Scholar 

  • Andreu D, Merrifield RB (1985) N-terminal analogues of cecropin A: synthesis, antibacterial activity, and conformational properties. Biochemistry 24:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Deber CM, Li SC (1995) Peptides in membranes: helicity and hydrophobicity. Biopolymers 37:295–318

    Article  PubMed  CAS  Google Scholar 

  • Deslouches B, Phadke SM, Lazarevic V, Cascio M, Islam K, Montelaro RC, Mietzner TA (2005) De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 49:316–322

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC, Wilcox W (1982) Hydrophobic moments and protein structure. Faraday Symp Chem Soc 17:109–120

    Article  Google Scholar 

  • Falla TJ, Hancock REW (1997) Improved activity of a synthetic indolicidin analog. Antimicrob Agents Chemother 41:771–775

    PubMed  CAS  Google Scholar 

  • Fauchere JL, Pliska VE (1983) Hydrophobic parameters p of amino acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 18:369–375

    CAS  Google Scholar 

  • Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    PubMed  CAS  Google Scholar 

  • Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39:8347–8352

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, Blazyk J (2005) Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic β-sheet and α-helical potentials. Antimicrob Agents Chemother 49:4957–4964

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Lee DG, Park Y, Kand DI, Shin SY, Hahm KS, Kim Y (2006) Interactions between the plasma membrane and the antimicrobial peptide HP (2–20) and its analogues derived from Helicobacter pylori. Biochem J 394:105–114

    Article  PubMed  CAS  Google Scholar 

  • Liu LP, Deber CM (1998) Uncoupling hydrophobicity and helicity in transmembrane segments. J Biol Chem 273:23645–23648

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR (2007) Length effects in antimicrobial peptides of the (RW) n series. Antimicrob Agents Chemother 51:597–603

    Article  PubMed  CAS  Google Scholar 

  • Loh B, Grant C, Hancock REW (1984) Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother 26:546–551

    Article  PubMed  CAS  Google Scholar 

  • Ma QQ, Shan AS, Dong N, Gu Y, Sun WY, Hu WN, Feng XJ (2011a) Cell selectivity and interaction with model membranes of Val/Arg-rich peptides. J Pept Sci 17:520–526

    Article  PubMed  CAS  Google Scholar 

  • Ma QQ, Shan AS, Dong N, Cao YP, Lv YF, Wang L (2011b) The effects of Leu or Val residues on cell selectivity of α-helical peptides. Protein Pept Lett 18:1112–1118

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JB, Nandi CL, McDonald IK, Thornton JM, Price SL (1994) Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J Mol Biol 239:315–331

    Article  PubMed  CAS  Google Scholar 

  • Niidome T, Matsuyama N, Kunihara M, Hatakeyama T, Aoyagi H (2005) Effect of chain length of cationic model peptides on antibacterial activity. Bull Chem Soc Jpn 78:473–476

    Article  CAS  Google Scholar 

  • Pellegrini A, Fellenberg R (1999) Design of synthetic bactericidal peptides derived from the bactericidal domain P (18–39) of aprotinin. Biochim Biophys Acta 1433:122–131

    Article  PubMed  CAS  Google Scholar 

  • Perez-Iratxeta C, Andrade-Navarro MA (2008) K2D2: estimation of protein secondary structure from circular dichroism spectra. BMC Struct Biol 8:25–29

    Article  PubMed  Google Scholar 

  • Quadri LEN, Yan LZ, Stiles ME, Vederas JC (1997) Effect of amino acid substitutions on the activity of carnobacteriocin B2. J Biol Chem 272:3384–3388

    Article  PubMed  CAS  Google Scholar 

  • Rohl CA, Baldwin RL (1998) Deciphering rules of helix stability in peptides. Method Enzymol 295:1–26

    Article  CAS  Google Scholar 

  • Sato H, Feix JB (2006) Peptide—membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta 1758:1245–1256

    Article  PubMed  CAS  Google Scholar 

  • Shafer WM, Hubalek F, Huang M, Pohl J (1996) Bactericidal activity of a synthetic peptide (CG 117–136) of human lysosomal cathepsin G is dependent on arginine content. Infect Immun 64:4842–4845

    PubMed  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Silvestro L, Weiser JN, Axelsen PH (2000) Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob Agents Chemother 44:602–607

    Article  PubMed  CAS  Google Scholar 

  • Song YM, Yang ST, Lim SS, Kim Y, Hahm KS, Kim JI, Shin SY (2004) Effects of l- or d-pro incorporation into hydrophobic or hydrophilic helix face of amphipathic a-helical model peptide on structure and cell selectivity. Biochem Biophys Res Commun 314:615–621

    Article  PubMed  CAS  Google Scholar 

  • Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46:3585–3590

    Article  PubMed  CAS  Google Scholar 

  • Steinberg DA, Hurst MA, Fujii CA, Kung AHC, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41:1738–1742

    PubMed  CAS  Google Scholar 

  • Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N (1996) Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395:48–52

    Article  PubMed  CAS  Google Scholar 

  • Tincu JA, Menzel LP, Azimov R, Sands J, Hong T, Waring AJ, Taylor SW, Lehrer RI (2003) Plicatamide, an antimicrobial octapeptide from styela plicata hemocytes. J Biol Chem 278:13546–13553

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2002) New consensus hydrophobicity scale extended to non-proteinogenic amino acids. In: Benedetti E, Pedone C (eds) Peptides. Proceedings of the 27th European peptide symposium. Edizioni Ziino, Napoli, pp 416–417

  • Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  PubMed  CAS  Google Scholar 

  • Yang ST, Shin SY, Lee CW, Kim YC, Hahm KS, Kim JI (2003) Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. FEBS Lett 540:229–233

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  • Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW, Leong SSJ, Chan-Park MB (2010) High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromolecules 11:60–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program (2012CB124703), the National Natural Science Foundation of China (31072046), the Program for Innovative Research Team of Universities in Heilongjiang Province, the China Postdoctoral Science Foundation (2012M510082), and the Heilongjiang Postdoctoral Foundation (LBH-Z11238). We are pleased to thank Wenyu Sun, Yao Gu, Liang Wang, and Wanning Hu for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Shan Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, QQ., Dong, N., Shan, AS. et al. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Amino Acids 43, 2527–2536 (2012). https://doi.org/10.1007/s00726-012-1334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1334-7

Keywords

Navigation