Skip to main content

Advertisement

Log in

Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Asparaginase catalyzes the degradation of l-asparagine to l-aspartic acid and ammonia, and is implicated in the catabolism of transported asparagine in sink tissues of higher plants. The Arabidopsis genome includes two genes, ASPGA1 and ASPGB1, belonging to distinct asparaginase subfamilies. Conditions of severe nitrogen limitation resulted in a slight decrease in seed size in wild-type Arabidopsis. However, this response was not observed in a homozygous T-DNA insertion mutant where ASPG genes had been inactivated. Under nitrogen-sufficient conditions, the ASPG mutant had elevated levels of free asparagine in mature seed. This phenotype was observed exclusively under conditions of low illumination, when a low ratio of carbon to nitrogen was translocated to the seed. Mutants deficient in one or both asparaginases were more sensitive than wild-type to inhibition of primary root elongation and root hair emergence by l-asparagine as a single nitrogen source. This enhanced inhibition was associated with increased accumulation of asparagine in the root of the double aspga1-1/-b1-1 mutant. This indicates that inhibition of root growth is likely elicited by asparagine itself or an asparagine-derived metabolite, other than the products of asparaginase, aspartic acid or ammonia. During germination, a fusion between the ASPGA1 promoter and beta-glucuronidase was expressed in endosperm cells starting at the micropylar end. Expression was initially high throughout the root and hypocotyl, but became restricted to the root tip after three days, which may indicate a transition to nitrogen-heterotrophic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657

    Article  PubMed  Google Scholar 

  • Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S (2005) Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44(4):680–692

    Article  PubMed  CAS  Google Scholar 

  • Bruneau L, Chapman R, Marsolais F (2006) Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase. Planta 224(3):668–679

    Article  PubMed  CAS  Google Scholar 

  • Canales J, Flores-Monterrosso A, Rueda-López M, Avila C, Cánovas FM (2010) Identification of genes regulated by ammonium availability in the roots of maritime pine trees. Amino Acids 39(4):991–1001

    Article  PubMed  CAS  Google Scholar 

  • Cañas RA, De La Torre F, Cánovas FM, Cantón FR (2006) High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen. Planta 224(1):83–95

    Article  PubMed  Google Scholar 

  • Cañas RA, de la Torre F, Cánovas FM, Cantón FR (2007) Coordination of PsAS1 and PsASPG expression controls timing of re-allocated N utilization in hypocotyls of pine seedlings. Planta 225:1205–1219

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Credali A, Díaz-Quintana A, García-Calderón M, De la Rosa MA, Márquez AJ, Vega JM (2011) Structural analysis of K+ dependence in l-asparaginases from Lotus japonicus. Planta 234(1):109–122

    Google Scholar 

  • Dytham C (1999) Choosing and using statistics: a biologist’s guide. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie AR, Galili G (2006) Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol 142(3):839–854

    Article  PubMed  CAS  Google Scholar 

  • Forsum O, Svennerstam H, Ganeteg U, Näsholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179(4):1058–1069

    PubMed  CAS  Google Scholar 

  • Grant M, Bevan MW (1994) Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant J 5(5):695–704

    Article  CAS  Google Scholar 

  • Gudynaite-Savitch L, Johnson DA, Miki BL (2009) Strategies to mitigate transgene-promoter interactions. Plant Biotech J 7(5):472–485

    Article  CAS  Google Scholar 

  • Gutiérrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, Dean A, Nero DC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci USA 105(12):4939–4944

    Article  PubMed  Google Scholar 

  • Havir EA, McHale NA (1988) A mutant of Nicotiana sylvestris lacking serine:glyoxylate aminotransferase: substrate specificity of the enzyme and fate of [2–14C]glycolate in plants with genetically altered enzyme levels. Plant Physiol 87(4):806–808

    Article  PubMed  CAS  Google Scholar 

  • Herridge RP, Day RC, Baldwin S, Macknight RC (2011) Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods 7(1):3

    Article  PubMed  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18(8):1931–1946

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5(11):R85

    Article  PubMed  Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105(1):3–7

    PubMed  CAS  Google Scholar 

  • Ireland RJ, Joy KW (1981) Two routes for asparagine metabolism in Pisum sativum L. Planta 151(3):289–292

    Article  CAS  Google Scholar 

  • Ireland RJ, Joy KW (1983) Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch Biochem Biophys 223(1):291–296

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  • Kendziorek M, Paszkowski A (2008) Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves. Acta Biochim Biophys Sin 40(2):102–110

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150(1):1–26

    Article  CAS  Google Scholar 

  • Lee Y-H, Foster J, Chen J, Voll LM, Weber AP, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50(2):305–319

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry 67(9):904–915

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25(5):487–498

    Article  PubMed  CAS  Google Scholar 

  • Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211(6):833–840

    Article  PubMed  CAS  Google Scholar 

  • Michalska K, Jaskolski M (2006) Structural aspects of l-asparaginases, their friends and relations. Acta Biochim Pol 53(4):627–640

    PubMed  CAS  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2008) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59(1):111–119

    Article  PubMed  CAS  Google Scholar 

  • Molnár-Perl I, Vasanits A (1999) Stability and characteristics of the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-cysteine reagents and their amino acid derivatives measured by high-performance liquid chromatography. J Chromatogr A 835(1–2):73–91

    Article  Google Scholar 

  • Murray AJS, Blackwell RD, Joy KW, Lea PJ (1987) Photorespiratory N donors, aminotransferase specificity and photosynthesis in a mutant of barley deficient in serine:glyoxylate aminotransferase activity. Planta 172(1):106–113

    Article  CAS  Google Scholar 

  • Murray DR, Kennedy IR (1980) Changes in activities of enzymes of nitrogen metabolism in seedcoats and cotyledons during embryo development in pea seeds. Plant Physiol 66(4):782–786

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41(5):697–709

    Article  PubMed  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48

    Article  PubMed  Google Scholar 

  • Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P (2008) Protein repair l-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20(11):3022–3037

    Article  PubMed  Google Scholar 

  • Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA (2004) Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark, is independent of abscisic acid, and requires PHOSPHOENOLPYRUVATE CARBOXYKINASE1. Plant Cell 16(10):2705–2718

    Article  PubMed  CAS  Google Scholar 

  • Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50(2):320–337

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP, Beevers H (1981) Amino acid transport in germinating castor bean seedlings. Plant Physiol 68(3):560–566

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Elfersi T, Parra G, Korf I (2008) Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20(3):543–551

    Article  PubMed  CAS  Google Scholar 

  • Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59(4):540–552

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14(12):2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Sieciechowicz KA, Ireland RJ, Joy KW (1985) Diurnal variation of asparaginase in developing pea leaves. Plant Physiol 77(2):506–508

    Article  PubMed  CAS  Google Scholar 

  • Sodek L, Lea PJ, Miflin BJ (1980) Distribution and properties of a potassium-dependent asparaginase isolated from developming seeds of Pisum sativum and other plants. Plant Physiol 65(1):22–26

    Article  PubMed  CAS  Google Scholar 

  • Sulieman S, Fischinger SA, Gresshoff PM, Schulze J (2010) Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol Plant 140(1):21–31

    Article  PubMed  CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Nashölm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143(4):1853–1860

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Chapman R, Beyaert R, Hernández-Sebastià C, Marsolais F (2008) Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine. J Agric Food Chem 56(14):5647–5654

    Article  PubMed  CAS  Google Scholar 

  • Tranbarger TJ, Al-Ghazi Y, Muller B, Teyssendier de la Serve B, Doumas P, Touraine B (2003) A macro-array-based screening approach to identify transcriptional factors involved in the nitrogen-related root plasticity response of Arabidopsis thaliana. Agronomie 23(5–6):519–528

    Article  CAS  Google Scholar 

  • Vincze E, Reeves JM, Lamping E, Farnden KJF, Reynolds PHS (1994) Repression of the l-asparaginase gene during nodule development in Lupinus angustifolius. Plant Mol Biol 26(1):303–311

    Article  PubMed  CAS  Google Scholar 

  • Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG (2006) Evidence that l-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47(8):1045–1057

    Article  PubMed  Google Scholar 

  • Wang RC, Okamoto M, Xing XJ, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132(2):556–567

    Article  PubMed  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(1):e718

    Article  PubMed  Google Scholar 

  • Woody ST, Austin-Phillips S, Amasino RM, Krysan PJ (2007) The WiscDsLox T-DNA collection: an arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res 120(1):157–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Douglas Johnson at the University of Ottawa for providing the pCAMBIA1302tZ-PrxN-GUS vector. We are grateful to Larry Stitt at the Department of Epidemiology and Biostatistics, University of Western Ontario for advice on statistical analysis, and Rey Interior, at the Advanced Protein Technology Centre, Hospital for Sick Children for amino acid analyses. We are indebted to staff at the Southern Crop Protection and Food Research Centre, Ida van Grinsven for DNA sequencing, Tim McDowell for elemental analysis and Alex Molnar for preparation of figures. Funding was provided by the Discovery Program of the Natural Sciences and Engineering Research Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marsolais.

Electronic supplementary material

Below is the link to the electronic supplementary material.

726_2011_973_MOESM1_ESM.pdf

Supplementary material 1 (PDF 55 kb) Table 1 C, S and N content of mature seed of wild-type and aspga1-1/-b1-1 grown under normal (115 μmol photons m−2 sec−1) or low (70 μmol photons m−2 sec−1) illumination. Table 2 Total amino acid profile of mature seeds of wild-type and aspga1-1/-b1-1 grown under low light conditions

726_2011_973_MOESM2_ESM.pdf

Supplementary material 2 (PDF 35 kb) Figure 1 Graphs of D × G interactions from ANOVA of values in Tables 2 (a) and 3 (b)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A., Kameka, A., Pajak, A. et al. Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine. Amino Acids 42, 2307–2318 (2012). https://doi.org/10.1007/s00726-011-0973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0973-4

Keywords

Navigation