Skip to main content
Log in

Parádsasvárite, a new member of the malachite-rosasite group from Parádsasvár, Mátra Mountains, Hungary

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Parádsasvárite (IMA No. 2012-077) was found in the Nagy-Lápafő area, Parádsasvár, Mátra Mountains, Hungary. It forms pale beige, globular aggregates up to 0.2 mm in diameter on calcite. Associated secondary minerals are smithsonite, hemimorphite, hydrozincite, aurichalcite and rosasite. The mineral was formed as an alteration product of sphalerite and chalcopyrite in a carbonate-rich environment. Parádsasvárite is translucent with a weakly vitreous, dull or silky lustre and white streak. Its Mohs hardness is about 2–3, cleavage and parting were not observed. It is brittle; the fracture is finely fibrous. Average of nine electron-microprobe analyses gave ZnO 58.08, CuO 12.60, PbO 1.27, CO2 (calc.) 19.50, H2O (calc.) 7.94, total 99.39 wt.%, corresponding to the empirical formula (Zn0.62Cu0.36Pb0.01)Σ0.99Zn1.00(CO3)(OH)2. The seven strongest lines in the X-ray powder diffraction pattern are [dhkl in Å (Iobs %, hkl)] 6.054 (67, 200), 5.085 (100, 210), 3.703 (87, 310 and 220), 3.021 (25, 400 and 130), 2.971 (25, −211 and 001), 2.603 (62, −221) and 2.539 (36, 420). According to its X-ray powder diffraction data and chemical formula, parádsasvárite belongs to the malachite-rosasite group and it is isostructural with rosasite. It is monoclinic, space group P21/a, a = 12.92(1), b = 9.372(7), c = 3.159(4) Å, β = 110.4(1)°, V = 358.5(5) Å3, Z = 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of mineralogy. Vol. V: Borates, carbonates, sulfates. Mineral Data Publishing, Tucson

    Google Scholar 

  • Deliens M, Piret P (1980) La kolwézite, un hydroxycarbonate de cuivre et de cobalt analogue à la glaukosphaerite et à la rosasite. Bull Minéral 103:179–184

    Google Scholar 

  • Eby RK, Hawthorne FC (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallogr B49:28–56

    Article  Google Scholar 

  • Fehér B, Szakáll S, Bigi S (2008) Minerals of the rosasite-zincrosasite series from the Andrássy-I. mine, Rudabánya, Hungary: the zincrosasite problem [abstract]. Mineral Spec Pap 32:65

    Google Scholar 

  • Frost RL, Wain DL, Martens WN, Reddy BJ (2007a) The molecular structure of selected minerals of the rosasite group – an XRD, SEM and infrared spectroscopic study. Polyhedron 26:275–283

    Article  Google Scholar 

  • Frost RL, Wain DL, Martens WN, Reddy BJ (2007b) Vibrational spectroscopy of selected minerals of the rosasite group. Spectrochim Acta A66:1068–1074

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  Google Scholar 

  • IMA (2014) The new IMA list of minerals. Updated: March 2014. Downloaded as a pdf file from the web site http://pubsites.uws.edu.au/ima-cnmnc/ on July 21, 2014

  • Ivanov OK, Malinovsky YA, Mozzherin YV (1984) Pokrovskite Mg2[CO3(OH)2] • 0.5H2O – a new mineral from the Zlatogorskaya layered intrusive (Kazakhstan). Zap Vses Mineral Obshch 113:90–95 (in Russian)

  • Kiss J (1960) A new ore occurrence in the environment of Nagygalya-Nagylipót-Aranybányafolyás (Mátra Mountains, NE-Hungary). Ann Univ Sci Bp Rolando Eötvös Nomin Sect Geol 3:55–81

    Google Scholar 

  • Kiss J (1964) Allitic and siallitic minerals and their role in the ore mineralization of the central part of the Mátra Mountains, N-Hungary. Földt Közl 94:422–431 (in Hungarian with French abstract)

  • Koch S (1966) Minerals of Hungary. Akadémiai Kiadó, Budapest (in Hungarian)

  • Kraus W, Nolze G (1996) Powder Cell – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  • Lovisato D (1908) Rosasite, nuovo minerale della miniera di Rosas (Sulcis, Sardegna). Atti R Accad Lincei Cl Sci Fis Mat Nat 17:723–728

    Google Scholar 

  • Mandarino J (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. Can Mineral 19:441–450

    Google Scholar 

  • Nickel EH, Berry LG (1981) The new mineral nullaginite and additional data on the related minerals rosasite and glaukosphaerite. Can Mineral 19:315–324

    Google Scholar 

  • Pauliš P, Novák F, Janák P (2005) Serpierite and zincrosasite from Herlíkovice near the town of Vrchlabí (Czech Republic). Opera Corcon 42:73–77 (in Czech with English abstract)

  • Pekov IV, Perchiazzi N, Merlino S, Kalachev VN, Merlini M, Zadov AE (2007) Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino. Eur J Mineral 19:891–898

    Article  Google Scholar 

  • Perchiazzi N (2006) Crystal structure determination and Rietveld refinement of rosasite and mcguinnessite. Z Krist Suppl 23:505–510

    Article  Google Scholar 

  • Perchiazzi N, Merlino S (2006) The malachite-rosasite group: crystal structures of glaukosphaerite and pokrovskite. Eur J Mineral 18:787–792

    Article  Google Scholar 

  • Pouchou L, Pichoir F (1984) A new model for quantitative X-ray microanalysis. Res Aerosp 3:167–192

    Google Scholar 

  • Roberts AC, Jambor JL, Grice JD (1986) The X-ray crystallography of rosasite from Tsumeb, Namibia. Powder Diffract 1:56–57

    Article  Google Scholar 

  • Rónai A, Pelikán P (2005) Geological map of Hungary. L-34-4 Gyöngyös, 1:100 000. Geological Institute of Hungary, Budapest (in Hungarian)

  • Strunz H (1959) Tsumeb, seine Erze und Sekundärmineralien, insbesondere der neu aufgeschlossenen zweiten Oxydationszone. Fortschr Mineral 37:87–90

    Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz mineralogical tables, 9th edn. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Zelensky ME, Matseevsky AB, Pekov IV (2009) The computer program QSpectr for processing X-ray powder diffraction films obtained from the Debye-Scherrer camera. Zap Ross Mineral Obshch 138(4):103–112 (in Russian with English abstract)

  • Zigan F, Joswig W, Schuster HD (1977) Verfeinerung der Struktur von Malachit, Cu2(OH)2CO3, durch Neutronenbeugung. Z Krist 145:412–426

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sándor Klaj (Pécs) for providing of the holotype sample and László Tóth (Velence) for the high quality photomicrograph of parádsasvárite. We also acknowledge Philip Rawlinson (Corvinus University, Budapest) for the English text revision. Finally, the authors would like to thank the two anonymous reviewers, as well as the Associate Editor Anton Beran for their valuable comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Fehér.

Additional information

Editorial handling: A. Beran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehér, B., Szakáll, S., Zajzon, N. et al. Parádsasvárite, a new member of the malachite-rosasite group from Parádsasvár, Mátra Mountains, Hungary. Miner Petrol 109, 405–411 (2015). https://doi.org/10.1007/s00710-015-0370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0370-x

Keywords

Navigation