Skip to main content
Log in

ER disruption and GFP degradation during non-regenerable transformation of flax with Agrobacterium tumefaciens

  • Original Paper
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Flax is considered as plant species susceptible to Agrobacterium-mediated genetic transformation. In this study, stability of flax transformation by Agrobacterium rhizogenes versus Agrobacterium tumefaciens was tested by using combined selection for antibiotic resistance and visual selection of green fluorescent protein (GFP)-fusion reporter targeted to the endoplasmic reticulum (ER). Transformation with A. rhizogenes was stable for over 2 years, whereas transformation by A. tumefaciens resulted in non-regenerable stable transformation which was restricted solely to transgenic callus and lasted only 6–8 weeks. However, shoots regenerated from this callus appeared to be non-transgenic. Importantly, callus and root cells stably transformed with A. rhizogenes showed typical regular organization and dynamics of ER as visualized by GFP-ER marker. On the other hand, callus cells transformed with A. tumefaciens showed disintegrated ER structure and impaired dynamics which was accompanied with developmental degradation of GFP. Consequently, shoots which regenerated from such callus were all non-transgenic. Possible reasons for this non-regenerable flax transformation by A. tumefaciens are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R, Zahringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  PubMed  CAS  Google Scholar 

  • Basiran N, Armitage P, Scott RJ, Draper J (1987) Genetic transformation of flax (Linum usitatissimum) by Agrobacterium tumefaciens regeneration of transformed shoots via a callus phase. Plant Cell Rep 6:396–399

    Article  CAS  Google Scholar 

  • Beranová M, Rakouský S, Vavrová Z, Skalický T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tissue Organ Cult 94:253–259

    Article  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatulata for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  • Bretagne-Sagnard B, Chupeau Y (1996) Selection of transgenic flax plants is facilitated by spectinomycin. Trans Res 5:131–137

    Article  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niva Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681

    Article  PubMed  CAS  Google Scholar 

  • Dong JZ, McHughen A (1993a) An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci 88:61–71

    Article  CAS  Google Scholar 

  • Dong JZ, McHughen A (1993b) Transgenic flax plants from Agrobacterium tumefaciens transformation—incidence of chimeric regenerants and inheritance of transgenic plants. Plant Sci 91:139–148

    Article  CAS  Google Scholar 

  • Duan YX, Liu X, Fan J, Li DL, Wu RCh, Guo WW (2007) Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene. Bot Stud 48:165–171

    Google Scholar 

  • Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    PubMed  CAS  Google Scholar 

  • Franklin G, Conceicao LF, Kombrink E, Dias AC (2008) Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta 227:1401–1408

    Article  PubMed  CAS  Google Scholar 

  • Franklin G, Conceicao LF, Kombrink E, Dias AC (2009) Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry 70:65–73

    Article  Google Scholar 

  • Gamborg OL, Shyluk JP (1976) Tissue culture, protoplast, and morphogenesis in flax. Bot Gaz 137:301–306

    Article  Google Scholar 

  • Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–1434

    Article  PubMed  CAS  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Laine E (2006) Pinoresinol-lariciresinol reductase gene expression and secisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Heim R, Cubitt AE, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  PubMed  CAS  Google Scholar 

  • Hepburn AG, Clarke LE, Blundy KS, White J (1983) Nopaline Ti-plasmid, pTiT37, T-DNA insertions into flax genome. J Mol Appl Genet 2:211–224

    PubMed  CAS  Google Scholar 

  • Hraška M, Heřmanová V, Rakouský S, Čurn V (2008) Sample topography and position within plant body influence the detection of the intensity of green fluorescent protein fluorescence in the leaves of transgenic tobacco plants. Plant Cell Rep 27:67–77

    PubMed  Google Scholar 

  • Hraška M, Rakouský S, Čurn V (2009) Green fluorescent protein as a vital marker for non-destructive detection of transformation events in transgenic plants. Plant Cell Tissue Organ Cult 86:303–318

    Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel-electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  Google Scholar 

  • Jordan MC, McHughen A (1988a) Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer. Plant Cell Rep 7:281–284

    Article  CAS  Google Scholar 

  • Jordan MC, McHughen A (1988b) Transformed callus does not necessarily regenerate transformed shoots. Plant Cell Rep 7:285–287

    Article  CAS  Google Scholar 

  • Lacoux J, Klein D, Domon JM, Burel C, Lamblin F, Alexandre F, Sihachakr D, Roger D, Lamblin F, Aime A, Hano Ch, Roussy I, Domon J-M, Droogenbroeck BV, Laine E (2007) The use of phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum L.). Plant Cell Rep 26:765–772

    Article  Google Scholar 

  • Lamblin F, Aime A, Hano CH, Roussy I, Domon JM, Droogenbroeck BV, Laine E (2007) The use of phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum L.). Plant Cell Rep 26:765–772

    Google Scholar 

  • McCubbin AG, Chung YY, Kao Th (1997) A Mutant S3 RNase of Petunia inflata lacking RNase activity has an allele-specific dominant negative effect on self-incompatibility interactions. Plant Cell 9:85–95

    Article  PubMed  CAS  Google Scholar 

  • McHughen A, Jordan M, Feist G (1989) A preculture period prior to Agrobacterium tumefaciens inoculation increases production of transgenic plants. J Plant Physiol 135:245–248

    Google Scholar 

  • Mlynárová L, Bauer M, Nap JP, Preťová A (1994) High efficiency Agrobacterium-mediated gene transfer to flax. Plant Cell Rep 13:282–285

    Article  Google Scholar 

  • Molinier J, Himber C, Hahne G (2000) Use of green fluorescent protein for detection of transformed shoots and homozygous offspring. Plant Cell Rep 19:219–223

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Musialak M, Wrobel-Kwiatkowska M, Kulma A, Starzycka E, Szopa J (2007) Improving retting of fibre through genetic modification of flax to express pectinases. Trans Res 17:133–147

    Article  Google Scholar 

  • Ooms G, Hooykaas PJ, Van Veen RJ, Van Beelen P, Regensburg-Tuink TJ, Schilperoort RA (1982) Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7:15–29

    Article  PubMed  CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  • Pruss GJ, Nester EW, Vance V (2008) Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Mol Plant Microbe Interact 21:1528–1538

    Article  PubMed  CAS  Google Scholar 

  • Quandt N, Stindl A, Keller U (1993) Sodium dodecyl-sulfate polyacrylamide-gel electrophoresis for M(r) estimation of high-molecular weight polypeptides. Anal Biochem 214:490–494

    Article  PubMed  CAS  Google Scholar 

  • Rakouský S, Tejklová E, Wiesner I, Wiesnerová D, Kocábek T, Ondřej M (1999) Hygromycin B—an alternative in flax transformant selection. Biol Plant 42:361–369

    Article  Google Scholar 

  • Saika H, Toki S (2009) Visual selection allows immediate identification of transgenic rice calli efficiently accumulating transgene products. Plant Cell Rep 28:619–626

    Article  PubMed  CAS  Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep 20:376–382

    Article  PubMed  CAS  Google Scholar 

  • Stewart CN Jr (2005) Monitoring the presence and expression of transgenes in living plants. Trends Plant Sci 8:390–396

    Article  Google Scholar 

  • Wang YS, Yoo ChM, Blancaflor EB (2008) Improved imaging of actin filaments in transgenic Arabidopsis plants expressing a green fluorescent protein fusion to the C- and N-termini of the fimbrin actin-binding domain 2. New Phytol 177:525–535

    PubMed  CAS  Google Scholar 

  • Wrobel M, Zebrowski J, Szopa J (2004) Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 107:41–54

    Article  PubMed  CAS  Google Scholar 

  • Xu SX, Cai XD, Tan B, Guo WW (2010) Comparison of expression of three different sub-cellular targeted GFPs in transgenic Valencia sweet orange by confocal laser scanning microscopy. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-010-9819-0

    Google Scholar 

  • Zhan XC, Jones DA, Kerr A (1988) Regeneration of flax plants transformed by Agrobacterium rhizogenes. Plant Mol Biol 11:551–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bekir Ülker (IZMB Bonn) for critical reading of the manuscript and useful suggestions. This work was supported by Grant No. ED0007/01/01 Centre of the Region Haná for Biotechnological and Agricultural Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Šamaj.

Additional information

Handling Editor: Pavla Binarova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleho, J., Obert, B., Takáč, T. et al. ER disruption and GFP degradation during non-regenerable transformation of flax with Agrobacterium tumefaciens . Protoplasma 249, 53–63 (2012). https://doi.org/10.1007/s00709-010-0261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0261-2

Keywords

Navigation