Skip to main content
Log in

Continuum thermodynamics of chemically reacting fluid mixtures

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We consider viscous, heat-conducting mixtures of molecularly miscible chemical species forming a fluid in which the constituents can undergo chemical reactions. Assuming a common temperature for all components, we derive a closed system of partial mass and partial momentum balances plus a mixture balance of internal energy. This is achieved by careful exploitation of the entropy principle and requires appropriate definitions of absolute temperature and chemical potentials, based on an adequate definition of thermal energy excluding diffusive contributions. The resulting interaction forces split into a thermo-mechanical and a chemical part, where the former turns out to be symmetric in case of binary interactions. For chemically reacting systems and as a new result, the chemical interaction force is a contribution being non-symmetric outside of chemical equilibrium. The theory also provides a rigorous derivation of the so-called generalized thermodynamic driving forces, avoiding the use of approximate solutions to the Boltzmann equations. Moreover, using an appropriately extended version of the entropy principle and introducing cross-effects already before closure as entropy invariant couplings between principal dissipative mechanisms, the Onsager symmetry relations become a strict consequence. With a classification of the factors in the binary products of the entropy production according to their parity—instead of the classical partition into so-called fluxes and driving forces—the apparent antisymmetry of certain couplings is thereby also revealed. If the diffusion velocities are small compared with the speed of sound, the Maxwell–Stefan equations follow in the case without chemistry, thereby neglecting wave phenomena in the diffusive motion. This results in a reduced model with only mass being balanced individually. In the reactive case, this approximation via a scale separation argument is no longer possible. We introduce the new concept of entropy invariant model reduction, leaving the entropy production unchanged under the reduction from partial momentum balances to a single mixture momentum balance. This results in an extension of the Maxwell–Stefan equations to chemically active mixtures with an additional contribution to the transport coefficients due to the chemical interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt W.: The entropy principle for interfaces. Fluids and solids. Adv. Mathe. Sci. Appl. 19, 585–663 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9–126. Teubner-Texte Math. vol. 133, Teubner, Stuttgart (1993)

  3. Annis B.K.: Stress induced diffusion in monatomic gases and gas suspensions. Phys. Fluids 14, 269–277 (1971)

    Article  MATH  Google Scholar 

  4. Bird R.B., Stewart W.E., Lightfoot E.N.: Transport Phenomena, 2nd edn. Wiley, New York (2007)

    Google Scholar 

  5. Bowen R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3, pp. 1–127. Academic Press, New York (1976)

  6. Bothe D.: Instantaneous limits of reversible chemical reactions in presence of macroscopic convection. J. Differ. Equ. 193, 27–48 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bothe, D.: On the Maxwell–Stefan equations to multicomponent diffusion. In: Escher, J., Guidotti, P., Hieber, M., Mucha, P., Prüss, J., Shibata, Y., Simonett, G., Walker, Chr., Zajaczkowski, W. (eds.) Progress in Nonlinear Differential Equations and their Applications, vol. 60, pp. 81–93. Springer, Basel (2011)

  8. Burgers J.M.: The Boltzmann equation for flows with chemical reactions. Planet. Space Sci. 3, 4–11 (1961)

    Article  Google Scholar 

  9. Datta R., Vilekar S.A.: The continuum mechanical theory of multicomponent diffusion in fluid mixtures. Chem. Eng. Sci. 65, 5976–5989 (2010)

    Article  Google Scholar 

  10. Dreyer W., Duderstadt F.: On the modelling of semi-insulating GaAs including surface tension and bulk stresses. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464, 2693–2720 (2008)

    Article  MATH  Google Scholar 

  11. Dreyer, W., Guhlke, C.: Sharp limit of the viscous Cahn–Hilliard equation and thermodynamic consistency, WIAS preprint 1771. Cont. Mech. Thermodyn. (2014, in review)

  12. Dreyer, W., Guhlke, C., Müller, R.: Rational modeling of electrochemical double-layers and derivation of Butler–Volmer equations, WIAS preprint 1860 (2013)

  13. Eckart C.: The thermodynamics of irreversible processes I. The simple fluid. Phys. Rev. 58, 267–269 (1940)

    Article  Google Scholar 

  14. Eckart C.: The thermodynamics of irreversible processes II. Fluid mixtures. Phys. Rev. 58, 269–275 (1940)

    Article  Google Scholar 

  15. Ferziger, J.H., Kaper, H.G.: Mathematical theory of transport processes in gases. North-Holland Publishing Company, Amsterdam, London (1972)

  16. Fick A.: Über Diffusion. Annalen der Physik 94, 59–86 (1855)

    Article  Google Scholar 

  17. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. arXiv:1208.5753v2 (2013)

  18. de Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. Dover Publications, Mineola (1984)

    Google Scholar 

  19. Giovangigli V.: Multicomponent flow modeling. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  20. Gouin H.: Variational theory of mixtures in continuum mechanics. Eur. J. Mech. B Fluids 9, 469–491 (1990)

    MATH  MathSciNet  Google Scholar 

  21. Gouin H., Muracchini A., Ruggeri T.: On the Müller paradox for thermal incompressible media. Contin. Mech. Thermodyn. 24, 505–513 (2011)

    Article  MathSciNet  Google Scholar 

  22. Grmela M., Öttinger H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620–6633 (1997)

    Article  MathSciNet  Google Scholar 

  23. Guhlke, C.: Theorie der elektrochemischen Grenzfläche. Ph.D. Dissertation, TU Berlin (2014)

  24. Gurtin M.E.: On the thermodynamics of chemically reacting fluid mixtures. Arch. Ration. Mech. Anal. 43, 198–212 (1971)

    MATH  MathSciNet  Google Scholar 

  25. Heckl M., Müller I.: Frame dependence, entropy, entropy flux, and wave speeds in mixtures of gases. Acta Mech. 50, 71–95 (1983)

    Article  MATH  Google Scholar 

  26. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids, (2nd corrected printing). Wiley, New York (1964)

  27. Hutter K., Jöhnk K.: Continuum Methods of Physical Modeling. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  28. Kerkhof P.J.A.M., Geboers M.A.M.: Analysis and extension of the theory of multicomponent fluid diffusion. Chem. Eng. Sci. 60, 3129–3167 (2005)

    Article  Google Scholar 

  29. Kerkhof, P.J.A.M., Geboers, M.A.M.: Toward a unified theory of isotropic molecular transport phenomena. AIChE J. 51, 79–121 (2005). Corrections: AIChE J. 57, 1099 (2011)

  30. Kjelstrup, S., Bedeaux, D.: Non-equilibrium thermodynamics of heterogeneous systems. In: Rasetti, M. (ed.) Series on Advances in Statistical Mechanics—vol. 16. World Scientific, Singapore (2008)

  31. Krishna R., Wesselingh J.A.: The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52, 861–911 (1997)

    Article  Google Scholar 

  32. Lebon G., Jou D., Casas-Vázquez J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  33. Liu I.-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46, 131–148 (1972)

    MATH  Google Scholar 

  34. Liu I.-S.: Continuum Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  35. Mauri R.: Non-Equilibrium Thermodynamics in Multiphase Flows. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  36. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1866)

    Article  Google Scholar 

  37. Meixner J.: Zur Thermodynamik der irreversiblen Prozesse in Gasen mit chemisch reagierenden, dissoziierenden and anregbaren Komponenten. Annalen der Physik 43, 244–270 (1943)

    Article  MathSciNet  Google Scholar 

  38. Meixner J.: Consistency of the Onsager–Casimir reciprocal relations. Adv. Mol. Relax. Process. 5, 319–331 (1973)

    Article  Google Scholar 

  39. Müller I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    Article  MATH  Google Scholar 

  40. Müller I.: Thermodynamics of mixtures of fluids. J. de Mécanique 14, 267–303 (1975)

    MATH  Google Scholar 

  41. Müller I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  42. Müller I.: A History of Thermodynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  43. Müller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, Berlin (1993)

    Book  Google Scholar 

  44. Müller I., Müller W.H.: Fundamentals of Thermodynamics and Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  45. Pekar M.: Thermodynamics and foundations of mass-action kinetics. Prog. React. Kinet. Mech. 30, 3–113 (2005)

    Article  Google Scholar 

  46. Slattery J.C.: Advanced Transport Phenomena. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  47. Snell F.M., Spangler R.A.: A phenomenological theory of transport in multicomponent systems. J. Phys. Chem. 71, 2503–2510 (1967)

    Article  Google Scholar 

  48. Standart G.L., Taylor R., Krishna R.: The Maxwell–Stefan formulation of irreversible thermodynamics for simultaneous heat and mass transfer. Chem. Eng. Commun. 3, 277–289 (1979)

    Article  Google Scholar 

  49. Stefan J.: Über das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, Sitzber. Akad. Wiss. Wien 63, 63–124 (1871)

    Google Scholar 

  50. Taylor R., Krishna R.: Multicomponent Mass Transfer. Wiley, New York (1993)

    Google Scholar 

  51. Truesdell C.: Sulle basi della termomeccanica. Accad. Lincei Rendiconti 22, 158–166 (1957)

    MathSciNet  Google Scholar 

  52. Truesdell C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344 (1962)

    Article  Google Scholar 

  53. Truesdell C.: Rational Thermodynamics. McGraw-Hill Series in Modern Applies Mathematics, New York (1969)

    Google Scholar 

  54. Truesdell C., Noll W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  55. Truesdell C., Toupin R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physik vol. III/1. Principals of classical mechanics and field theories, Springer, Berlin (1960)

    Google Scholar 

  56. Whitaker S.: Transport processes with heterogeneous reaction. On the Maxwell–Stefan equations to multicomponent diffusion. In: Cassano, A.E., Whitaker, S. (eds.) Concepts and Design of Chemical Reactors, pp. 1–94. Gordon and Breach, NewYork (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bothe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bothe, D., Dreyer, W. Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech 226, 1757–1805 (2015). https://doi.org/10.1007/s00707-014-1275-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1275-1

Mathematics Subject Classification

Navigation