Skip to main content
Log in

Methanol-sensing characteristics of zinc oxide nanotubes: quantum chemical study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Adsorption of a methanol molecule on a ZnO nanotube was investigated by using density functional calculations in terms of energetic, geometric, and electronic properties. The adsorption energy is found to be in the range of −23.4 to −220.7 kJ/mol. The electronic properties of the tube strongly depend on the orientation of the methanol on the nanotube surface. When the methanol attacks a hexagonal ring of the tube via its methyl hydrogens, the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap of the tube is significantly decreased from 2.27 to 1.53 eV, and, therefore, it becomes more conductive. This suggests that a pristine ZnO nanotube may generate an electrical signal in the presence of methanol molecules, making it a potential candidate for methanol detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sawicka KM, Prasad AK, Gouma PI (2005) Sens Lett 3:31

    Article  CAS  Google Scholar 

  2. Ivanovskaya M, Bogdanov P (1998) Sens Actuators B Chem 53:44

    Article  CAS  Google Scholar 

  3. Möller H, Müller-Warmuth W, Rüschendorf F, Schöllhorn R (1987) Z Phys Chem 151:121

    Article  Google Scholar 

  4. Yoon JW, Choi JK, Lee JH (2012) Sens Actuators B Chem 161:570

    Article  CAS  Google Scholar 

  5. Zhou D, Gan L, Gong S, Fu Q, Liu H (2011) Sens Lett 9:651

    Article  CAS  Google Scholar 

  6. González-Elipe AR, Soria J (1982) Z Phys Chem 132:67

    Article  Google Scholar 

  7. Faisal M, Khan SB, Rahman MM, Jamal A, Abdullah MM (2012) Appl Surf Sci 258:7515

    Article  CAS  Google Scholar 

  8. Hong HS, Phan DT, Chung GS (2012) Sens Actuators B Chem 171–172:1283

    Article  Google Scholar 

  9. Zhang X, Chen Y (2009) Anal Chim Acta 650:254

    Article  CAS  Google Scholar 

  10. Sahay PP, Nath RK (2008) Sens Actuators B Chem 134:654

    Article  CAS  Google Scholar 

  11. Liu B, Zeng HC (2003) J Am Chem Soc 125:4430

    Article  CAS  Google Scholar 

  12. Xu WZ, Ye ZZ, Ma DW, Lu HM, Zhu LP, Zhao BH, Yang XD, Xu ZY (2005) Appl Phys Lett 87:093110

    Article  Google Scholar 

  13. Sima M, Visan T, Matei E, Ungureanu F, Enculescu I, Sima M (2011) Z Phys Chem 225:325

    Article  CAS  Google Scholar 

  14. Li YB, Bando Y, Sato T, Kurashima K (2002) Appl Phys Lett 81:144

    Article  CAS  Google Scholar 

  15. Zhang H, Shen L, Guo S (2007) J Phys Chem C 111:12939

    Article  CAS  Google Scholar 

  16. Xia C, Wang N, Lidong L, Lin G (2008) Sens Actuators B Chem 129:268

    Article  CAS  Google Scholar 

  17. Zhang N, Yu K, Zhu Z, Jiang D (2008) Sens Actuators A Phys 143:245

    Article  CAS  Google Scholar 

  18. Tseng YK, Huang CJ, Cheng HM, Lin IN, Liu KS, Chen IC (2003) Adv Funct Mater 13:811

    Article  CAS  Google Scholar 

  19. Wang Z, Qian XF, Yin J, Zhu ZK (2004) J Solid State Chem 117:2144

    Article  Google Scholar 

  20. Gao XP, Zheng ZF, Zhu HY, Pan GL, Bao JL, Wu F, Song DY (2004) Chem Commun 1:1428

    Article  Google Scholar 

  21. Wang J, Cao J, Fang B, Lu P, Deng S, Wang H (2005) Mater Lett 59:1405

    Article  CAS  Google Scholar 

  22. Wang Z, Qian X, Yin J, Zhu ZK (2004) Langmuir 20:3411

    Google Scholar 

  23. Peyghan AA, Noei M (2014) Phys B 432:105

    Article  CAS  Google Scholar 

  24. Prajongtat P, Suramitr S, Gleeson MP, Mitsuke K, Hannongbua S (2013) Montash Chem 144:925

    Article  CAS  Google Scholar 

  25. Tsierkezos NG, Wetzold N, Ritter U, Hübler AC (2013) Montash Chem 144:581

    Article  CAS  Google Scholar 

  26. Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) Microelectron J 43:452

    Article  CAS  Google Scholar 

  27. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801

    Article  CAS  Google Scholar 

  28. Kong J, Franklin N, Zhou C, Chapline M, Peng S, Cho K, Dai H (2000) Science 287:622

    Article  CAS  Google Scholar 

  29. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929

    Article  CAS  Google Scholar 

  30. Goldoni A, Larciprete R, Petaccia L, Lizzit S (2003) J Am Chem Soc 125:11329

    Article  CAS  Google Scholar 

  31. Babaei A, Dehdashti A, Afrasiabi M, Babazadeh M, Farshbaf M, Bamdad F (2012) Sens Lett 10:1039

    Article  CAS  Google Scholar 

  32. Beheshtian J, Peyghan AA, Bagheri Z (2012) Sens Actuators B Chem 171–172:846

    Article  Google Scholar 

  33. Beheshtian J, Baei MT, Peyghan AA, Bagheri Z (2012) J Mol Model 18:4745

    Article  CAS  Google Scholar 

  34. Beheshtian J, Peyghan AA, Bagheri Z (2012) Struct Chem 24:165

    Article  Google Scholar 

  35. Wang X, Liew KM (2011) J Phys Chem C 115:10388

    Article  CAS  Google Scholar 

  36. Beheshtian J, Peyghan AA, Bagheri Z (2012) Thin Solid Films 526:139

    Article  CAS  Google Scholar 

  37. Li L, Pan SS, Dou XC, Zhu YG, Huang XH, Yang YW, Li GH, Zhang LD (2007) J Phys Chem C 111:7288

    Article  CAS  Google Scholar 

  38. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE (2001) Chem Mater 13:4395

    Article  CAS  Google Scholar 

  39. Kar S, Santra S (2008) J Phys Chem C 112:8144

    Article  CAS  Google Scholar 

  40. Erkoc S, Kokten H (2005) Phys E 28:162

    Article  CAS  Google Scholar 

  41. Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S (2009) Phys Rev B 80:235119

    Article  Google Scholar 

  42. Tu ZC, Hu X (2006) Phys Rev B 74:035434

    Article  Google Scholar 

  43. Shen X, Allen PB, Muckerman JT, Davenport JW, Zheng JC (2007) Nano Lett 7:2267

    Article  CAS  Google Scholar 

  44. An W, Wu XJ, Zeng XC (2008) J Phys Chem C 112:5747

    Article  CAS  Google Scholar 

  45. Song K, Zhang D, Liu C (2011) Comput Theor Chem 978:98

    Article  CAS  Google Scholar 

  46. Li S (2006) Semiconductor physical electronics, 2nd edn. Springer, New York

    Book  Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  48. Baei MT, Sayyed-Alangi SZ, Soltani A, Bahari M, Masooli A (2011) Monatsh Chem 142:1

    Article  CAS  Google Scholar 

  49. Praveena G, Kolandaivel P (2007) J Mol Struct 828:154

    Article  CAS  Google Scholar 

  50. Chen L, Xu C, Zhang XF, Zhou T (2009) Phys E 41:852

    Article  CAS  Google Scholar 

  51. Baei MT, Soltani AR, Varasteh Moradi A, Moghimi M (2011) Montash Chem 142:573

    Article  CAS  Google Scholar 

  52. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadi Peyghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Aslanzadeh, S.A. & Soleymanabadi, H. Methanol-sensing characteristics of zinc oxide nanotubes: quantum chemical study. Monatsh Chem 145, 1253–1257 (2014). https://doi.org/10.1007/s00706-014-1177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1177-x

Keywords

Navigation