Skip to main content
Log in

Identification and evolutionary analysis of papillomavirus sequences in New World monkeys (genera Sapajus and Alouatta) from Argentina

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Objective

In this study, we investigated the occurrence of papillomavirus (PV) infection in non-human primates (NHPs) in northeastern Argentina. We also explored their evolutionary history and evaluated the co-speciation hypothesis in the context of primate evolution.

Methods

We obtained DNA samples from 57 individuals belonging to wild and captive populations of Alouatta caraya, Sapajus nigritus, and Sapajus cay. We assessed PV infection by PCR amplification with the CUT primer system and sequencing of 337 bp (112 amino acids) of the L1 gene. The viral sequences were analyzed by phylogenetic and Bayesian coalescence methods to estimate the time to the most common recent ancestor (tMRCA) using BEAST, v1.4.8 software. We evaluated viral/host tree congruence with TreeMap v3.0.

Results

We identified two novel putative PV sequences of the genus Gammapapillomavirus in Sapajus spp. and Alouatta caraya (SPV1 and AcPV1, respectively). The tMRCA of SPV1 was estimated to be 11,941,682 years before present (ybp), and that of AcPV1 was 46,638,071 ybp, both before the coalescence times of their hosts (6.4 million years ago [MYA] and 6.8 MYA, respectively). Based on the comparison of primate and viral phylogenies, we found that the PV tree was no more congruent with the host tree than a random tree would be (P > 0.05), thus allowing us to reject the model of virus-host coevolution.

Conclusion

This study presents the first evidence of PV infection in platyrrhine species from Argentina, expands the range of described hosts for these viruses, and suggests new scenarios for their origin and dispersal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rector A, Van Ranst M (2013) Animal papillomaviruses. Virology. https://doi.org/10.1016/j.virol.2013.05.007

    Article  PubMed  Google Scholar 

  2. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology. https://doi.org/10.1016/j.virol.2004.03.033

    Article  PubMed  Google Scholar 

  3. Van Doorslaer K, Li Z, Xirasagar S, Maes P, Kaminsky D, Liou D et al (2017) The papillomavirus episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw879

    Article  PubMed  Google Scholar 

  4. Antonsson A, Hansson BG (2002) Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol. https://doi.org/10.1128/JVI.76.24.12537-12542.2002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen Z, van Doorslaer K, DeSalle R, Wood CE, Kaplan JR, Wagner JD et al (2009) Genomic diversity and interspecies host infection of alpha12 Macaca fascicularis papillomaviruses (MfPVs). Virology. https://doi.org/10.1016/j.virol.2009.07.012

    Article  PubMed  Google Scholar 

  6. Chen Z, Long T, Wong PY, Ho WCS, Burk RD, Chan PKS (2019) Non-human primate papillomaviruses share similar evolutionary histories and niche adaptation as the human counterparts. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02093

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chan SY, Bernard HU, Ratterree M, Birkebak TA, Faras AJ, Ostrow RS (1997) Genomic diversity and evolution of papillomaviruses in rhesus monkeys. J Virol 71(7):4938–4943

    Article  CAS  Google Scholar 

  8. Rector A, Lemey P, Tachezy R, Mostmans S, Ghim SJ, Van Doorslaer K et al (2007) Ancient papillomavirus-host co-speciation in Felidae. Genome Biol. https://doi.org/10.1186/gb-2007-8-4-r57

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gottschling M, Stamatakis A, Nindl I, Stockfleth E, Alonso A, Bravo IG (2007) Multiple evolutionary mechanisms drive papillomavirus diversification. Mol Biol Evol. https://doi.org/10.1093/molbev/msm039

    Article  PubMed  Google Scholar 

  10. Gottschling M, Göker M, Stamatakis A, Bininda-Emonds OR, Nindl I, Bravo IG (2011) Quantifying the phylodynamic forces driving papillomavirus evolution. Mol Biol Evol. https://doi.org/10.1093/molbev/msr030

    Article  PubMed  Google Scholar 

  11. Shah SD, Doorbar J, Goldstein RA (2010) Analysis of host-parasite incongruence in papillomavirus evolution using importance sampling. Mol Biol Evol. https://doi.org/10.1093/molbev/msq015

    Article  PubMed  PubMed Central  Google Scholar 

  12. García-Pérez R, Ibáñez C, Godínez JM, Aréchiga N, Garin I, Pérez-Suárez G et al (2014) Novel papillomaviruses in free-ranging Iberian bats: no virus-host co-evolution, no strict host specificity, and hints for recombination. Genome Biol Evol. https://doi.org/10.1093/gbe/evt211

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bravo IG, de Sanjosé S, Gottschling M (2010) The clinical importance of understanding the evolution of papillomaviruses. Trends Microbiol. https://doi.org/10.1016/j.tim.2010.07.008

    Article  PubMed  Google Scholar 

  14. Van Doorslaer K (2013) Evolution of the papillomaviridae. Virology. https://doi.org/10.1016/j.virol.2013.05.012

    Article  PubMed  Google Scholar 

  15. Bolatti EM, Chouhy D, Casal PE, Pérez GR, Stella EJ, Sanchez A et al (2016) Characterization of novel human papillomavirus types 157, 158 and 205 from healthy skin and recombination analysis in genus γ-Papillomavirus. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2016.04.018

    Article  PubMed  Google Scholar 

  16. Murahwa AT, Tshabalala M, Williamson AL (2020) Recombination between high-risk human papillomaviruses and non-human primate papillomaviruses: evidence of ancient host switching among alphapapillomaviruses. J Mol Evol. https://doi.org/10.1007/s00239-020-09946-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ostrow RS, McGlennen RC, Shaver MK, Kloster BE, Houser D, Faras AJ (1990) A rhesus monkey model for sexual transmission of a papillomavirus isolated from a squamous cell carcinoma. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.87.20.8170

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wood CE, Chen Z, Cline JM, Miller BE, Burk RD (2007) Characterization and experimental transmission of an oncogenic papillomavirus in female macaques. J Virol. https://doi.org/10.1128/JVI.00233-07

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bergin IL, Bell JD, Chen Z, Zochowski MK, Chai D, Schmidt K et al (2013) Novel genital alphapapillomaviruses in baboons (Papio hamadryas anubis) with cervical dysplasia. Vet Pathol. https://doi.org/10.1177/0300985812439725

    Article  PubMed  Google Scholar 

  20. Van Ranst M, Fuse A, Fiten P, Beuken E, Pfister H, Burk RD et al (1992) Human papillomavirus type 13 and pygmy chimpanzee papillomavirus type 1: comparison of the genome organizations. Virology. https://doi.org/10.1016/0042-6822(92)90896-W

    Article  PubMed  Google Scholar 

  21. Joh J, Hopper K, Van Doorslaer K, Sundberg JP, Jenson AB, Ghim SJ (2009) Macaca fascicularis papillomavirus type 1: a non-human primate betapapillomavirus causing rapidly progressive hand and foot papillomatosis. J Gen Virol. https://doi.org/10.1099/vir.0.006544-0

    Article  PubMed  Google Scholar 

  22. Wood CE, Tannehill-Gregg SH, Chen Z, Kv D, Nelson DR, Cline JM et al (2011) Novel betapapillomavirus associated with hand and foot papillomas in a cynomolgus macaque. Vet Pathol. https://doi.org/10.1177/0300985810383875

    Article  PubMed  Google Scholar 

  23. Chen Z, Wood CE, Abee CR, Burk RD (2018) Complete Genome sequences of three novel Saimiri sciureus papillomavirus types isolated from the cervicovaginal region of squirrel monkeys. Genome Announc. https://doi.org/10.1128/genomeA.01400-17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Long T, Wong PY, Ho WCS, Burk RD, Chan PKS, Chen Z (2018) Complete genome sequences of six novel Macaca mulatta papillomavirus types isolated from genital sites of Rhesus Monkeys in Hong Kong SAR, China. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01414-18

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen Z, DeSalle R, Schiffman M, Herrero R, Wood CE, Ruiz JC et al (2018) Niche adaptation and viral transmission of human papillomaviruses from archaic hominins to modern humans. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1007352

    Article  PubMed  PubMed Central  Google Scholar 

  26. Silvestre RV, de Souza AJ, Júnior EC, Silva AK, de Mello WA, Nunes MR et al (2016) First new world primate papillomavirus identification in the Atlantic Forest, Brazil: Alouatta guariba papillomavirus 1. Genome Announc. https://doi.org/10.1128/genomeA.00725-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Köhler A, Gottschling M, Manning K, Lehmann MD, Schulz E, Krüger-Corcoran D et al (2011) Genomic characterization of ten novel cutaneous human papillomaviruses from keratotic lesions of immunosuppressed patients. J Gen Virol. https://doi.org/10.1099/vir.0.030593-0

    Article  PubMed  Google Scholar 

  28. Zunino GE, Kowalewski MM (2008) Primate research and conservation in northern Argentina: the field station Corrientes (Estación Biológica de Usos Múltiples—EBCo). Trop Conserv Sci. https://doi.org/10.1177/194008290800100206

    Article  Google Scholar 

  29. Kowalewski MM, Salzer JS, Deutsch JC, Raño M, Kuhlenschmidt MS, Gillespie TR (2011) Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact. Am J Primatol. https://doi.org/10.1002/ajp.20803

    Article  PubMed  Google Scholar 

  30. International Primatological Society, 2014. Code of best practices for field primatology. https://www.asp.org/resources/docs/Code%20of_Best_Practices%20Oct%202014.pdf. Accessed 10 Jan 2022

  31. Morales MA, Fabbri CM, Zunino GE, Kowalewski MM, Luppo VC, Enría DA et al (2017) Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina. PLoS Negl Trop Dis. https://doi.org/10.1371/journal.pntd.0005351

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nieves M, Remis MI, Sesarini C, Hassel DL, Argüelles CF, Mudry MD (2021) Assessment of genetic variability in captive capuchin monkeys (Primates: Cebidae). Sci Rep. https://doi.org/10.1038/s41598-021-86734-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chouhy D, Gorosito M, Sánchez A, Serra EC, Bergero A, Fernandez Bussy R, Giri AA (2010) New generic primer system targeting mucosal/genital and cutaneous human papillomaviruses leads to the characterization of HPV 115, a novel Beta-papillomavirus species 3. Virology. https://doi.org/10.1016/j.virol.2009.11.020

    Article  PubMed  Google Scholar 

  34. Bolatti EM, Hošnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H et al (2018) High prevalence of Gammapapillomaviruses (Gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel Gamma-PV type. Virology. https://doi.org/10.1016/j.virol.2018.09.006

    Article  PubMed  Google Scholar 

  35. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. https://doi.org/10.1038/nmeth.4285

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. https://doi.org/10.1093/molbev/msu300

    Article  PubMed  PubMed Central  Google Scholar 

  38. Minh BQ, Nguyen MA, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. https://doi.org/10.1093/molbev/mst024

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 10 Jan 2022.

  40. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. https://doi.org/10.1093/ve/vey016

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst Biol. https://doi.org/10.1093/sysbio/syy032

    Article  PubMed  PubMed Central  Google Scholar 

  42. Charleston (2011) TreeMap 3, which is freely available at https://sites.google.com/site/cophylogeny/software. Accessed 10 Jan 2022.

  43. Page RD, Charleston MA (1997) From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol Phylogenet Evol. https://doi.org/10.1006/mpev.1996.0390

    Article  PubMed  Google Scholar 

  44. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. https://doi.org/10.1093/sysbio/syq010

    Article  PubMed  Google Scholar 

  45. D’arc M, Moreira FRR, Dias CA, Souza AR, Seuánez HN, Soares MA, Tavares MCH, Santos AFA (2020) The characterization of two novel neotropical primate papillomaviruses supports the ancient within-species diversity model. Virus Evol. https://doi.org/10.1093/ve/veaa036

    Article  PubMed  PubMed Central  Google Scholar 

  46. Forslund O (2007) Genetic diversity of cutaneous human papillomaviruses. J Gen Virol. https://doi.org/10.1099/vir.0.82911-0

    Article  PubMed  Google Scholar 

  47. Bolatti EM, Hošnjak L, Chouhy D, Casal PE, Re-Louhau MF, Bottai H et al (2020) Assessing Gammapapillomavirus infections of mucosal epithelia with two broad-spectrum PCR protocols. BMC Infect Dis. https://doi.org/10.1186/s12879-020-4893-3

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bottalico D, Chen Z, Dunne A, Ostoloza J, McKinney S, Sun C et al (2011) The oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis. https://doi.org/10.1093/infdis/jir383

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schino G, Di Giuseppe F, Visalberghi E (2009) Grooming, rank, and agonistic support in tufted capuchin monkeys. Am J Primatol. https://doi.org/10.1002/ajp.20627

    Article  PubMed  Google Scholar 

  50. Murahwa AT, Nindo F, Onywera H, Meiring TL, Martin DP, Williamson AL (2019) Evolutionary dynamics of ten novel Gamma-PVs: insights from phylogenetic incongruence, recombination and phylodynamic analyses. BMC Genom. https://doi.org/10.1186/s12864-019-5735-9

    Article  Google Scholar 

  51. Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MA et al (2011) A molecular phylogeny of living primates. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001342

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lynch Alfaro JW, Boubli JP, Olson LE, Di Fiore A, Wilson B, Gutierrez-Espeleta GA et al (2011) Explosive pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. J Biogeogr. https://doi.org/10.1111/j.1365-2699.2011.02609.x

    Article  Google Scholar 

  53. Cortés-Ortiz L, Bermingham E, Rico C, Rodríguez-Luna E, Sampaio I, Ruiz-García M (2003) Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol Phylogenet Evol. https://doi.org/10.1016/S1055-7903(02)00308-1

    Article  PubMed  Google Scholar 

  54. Williams JH, van Dyk E, Nel PJ, Lane E, Van Wilpe E, Bengis RG et al (2011) Pathology and immunohistochemistry of papillomavirus-associated cutaneous lesions in Cape mountain zebra, giraffe, sable antelope and African buffalo in South Africa. J S Afr Vet Assoc 82(3):185

    Article  Google Scholar 

  55. Munday JS, Hanlon EM, Howe L, Squires RA, French AF (2007) Feline cutaneous viral papilloma associated with human papillomavirus type 9. Vet Pathol. https://doi.org/10.1354/vp.44-6-924

    Article  PubMed  Google Scholar 

  56. Arroyo LS, Smelov V, Bzhalava D, Eklund C, Hultin E, Dillner J (2013) Next generation sequencing for human papillomavirus genotyping. J Clin Virol. https://doi.org/10.1016/j.jcv.2013.07.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maria Patricia Casco and Ester Bernaldo de Quirós for their help with sample collection during fieldwork. We are also thankful to María Elina Totaro for her technical assistance in the laboratory.

Funding

This work was supported through a doctoral fellowship from the Consejo Nacional de Investigaciones Científico y Tecnológicas (CONICET) (10320130101208CO) to CSF. IB, MMK, EB, DC, and AAG are members of CONICET. This study was partially supported by research Grant PIP IU 0355 CONICET (MMK). The equipment and software used in the study were partially supported by an Idea Wilds grant (CSF) (501c(3)) and a Codon Code Aligner Grants license program (IB). None of the funding agencies have been involved in the study design, data collection, analysis, or paper writing and submission.

Author information

Authors and Affiliations

Authors

Contributions

CS-F: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization, funding acquisition. EMB: methodology, validation, formal analysis, investigation, data curation, writing—review and editing. ACAC: methodology, formal analysis, visualization, writing—review and editing. DC: methodology, formal analysis, writing—review and editing. MMK: conceptualization, resources, supervision, project administration, writing—review and editing. EJS: investigation, writing—review and editing. TGS: formal analysis, resources, writing—review and editing. MAR, DJL, and RHC: resources, writing—review and editing. AAG: resources; project administration, funding acquisition, writing—review and editing. IB: conceptualization, methodology, formal analysis, resources, data curation, writing—review and editing, supervision, project administration, funding acquisition

Corresponding author

Correspondence to C. Sanchez-Fernandez.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Graciela Andrei.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Fernandez, C., Bolatti, E.M., Culasso, A.C.A. et al. Identification and evolutionary analysis of papillomavirus sequences in New World monkeys (genera Sapajus and Alouatta) from Argentina. Arch Virol 167, 1257–1268 (2022). https://doi.org/10.1007/s00705-022-05420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05420-y

Navigation