Skip to main content

Advertisement

Log in

Association between a naturally arising polymorphism within a functional region of HIV-1 Nef and disease progression in chronic HIV-1 infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

HIV-1 Nef mediates downregulation of HLA class I (HLA-I) through a number of highly conserved sequence motifs. We investigated the in vivo implication(s) of naturally arising polymorphisms in functional motifs in HIV-1 Nef that are associated with HLA-I downregulation, including the acidic cluster, polyproline, di-arginine and Met-20 regions. Plasma samples from treatment-naive, chronically HIV-1 infected subjects were collected after obtaining informed consent, and viral RNA was extracted and amplified by nested RT-PCR. The resultant nef amplicons were sequenced directly, and subtype-B sequences with an intact open reading frame (n = 406) were included in our analyses. There was over-representation of isoleucine at position 20 (Ile-20) in our dataset when compared to sequences in the Los Alamos sequence database (17.7 vs. 6.9 %, p = 0.0309). The presence of having Ile-20 in Nef was found to be associated with higher median plasma viral load (p = 0.013), independent of associated codons or viral lineage effects, whereas no clinical association was found with polymorphisms in the other functional motifs. Moreover, introduction of a Met-20-to-Ile mutation in a laboratory strain SF2 Nef resulted in a modest, albeit not statistically significant, increase in HLA class I downregulation activity (p = 0.06). Taken together, we have identified a naturally arising polymorphism, Ile-20, within HIV-1 subtype B Nef that is associated with poorer disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Plantier JC, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemee V, Damond F, Robertson DL, Simon F (2009) A new human immunodeficiency virus derived from gorillas. Nat Med 15(8):871–872. doi:10.1038/nm.2016

    Article  CAS  PubMed  Google Scholar 

  2. Kim JE, Beckthold B, Chen Z, Mihowich J, Malloch L, Gill MJ (2007) Short communication: identification of a novel HIV type 1 subtype H/J recombinant in Canada with discordant HIV viral load (RNA) values in three different commercial assays. AIDS Res Hum Retroviruses 23(11):1309–1313. doi:10.1089/aid.2007.0080

    Article  CAS  PubMed  Google Scholar 

  3. Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V (2001) Evolutionary and immunological implications of contemporary HIV-1 variation. Br Med Bull 58:19–42

    Article  CAS  PubMed  Google Scholar 

  4. Jubier-Maurin V, Saragosti S, Perret JL, Mpoudi E, Esu-Williams E, Mulanga C, Liegeois F, Ekwalanga M, Delaporte E, Peeters M (1999) Genetic characterization of the nef gene from human immunodeficiency virus type 1 group M strains representing genetic subtypes A, B, C, E, F, G, and H. AIDS Res Hum Retroviruses 15(1):23–32. doi:10.1089/088922299311673

    Article  CAS  PubMed  Google Scholar 

  5. Kestler HW 3rd, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65(4):651–662

    Article  CAS  PubMed  Google Scholar 

  6. Deacon NJ, Tsykin A, Solomon A, Smith K, Ludford-Menting M, Hooker DJ, McPhee DA, Greenway AL, Ellett A, Chatfield C, Lawson VA, Crowe S, Maerz A, Sonza S, Learmont J, Sullivan JS, Cunningham A, Dwyer D, Dowton D, Mills J (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270(5238):988–991

    Article  CAS  PubMed  Google Scholar 

  7. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC (1995) Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332(4):228–232. doi:10.1056/NEJM199501263320405

    Article  CAS  PubMed  Google Scholar 

  8. Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC (1992) Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258(5090):1938–1941

    Article  CAS  PubMed  Google Scholar 

  9. Klotman ME, Kim S, Buchbinder A, DeRossi A, Baltimore D, Wong-Staal F (1991) Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proc Natl Acad Sci USA 88(11):5011–5015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Miller MD, Warmerdam MT, Gaston I, Greene WC, Feinberg MB (1994) The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J Exp Med 179(1):101–113

    Article  CAS  PubMed  Google Scholar 

  11. Ross TM, Oran AE, Cullen BR (1999) Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr Biol 9(12):613–621

    Article  CAS  PubMed  Google Scholar 

  12. Garcia JV, Miller AD (1991) Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350(6318):508–511. doi:10.1038/350508a0

    Article  CAS  PubMed  Google Scholar 

  13. Schindler M, Wurfl S, Benaroch P, Greenough TC, Daniels R, Easterbrook P, Brenner M, Munch J, Kirchhoff F (2003) Down-modulation of mature major histocompatibility complex class II and up-regulation of invariant chain cell surface expression are well-conserved functions of human and simian immunodeficiency virus nef alleles. J Virol 77(19):10548–10556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2(3):338–342

    Article  CAS  PubMed  Google Scholar 

  15. Akari H, Arold S, Fukumori T, Okazaki T, Strebel K, Adachi A (2000) Nef-induced major histocompatibility complex class I down-regulation is functionally dissociated from its virion incorporation, enhancement of viral infectivity, and CD4 down-regulation. J Virol 74(6):2907–2912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Mangasarian A, Piguet V, Wang JK, Chen YL, Trono D (1999) Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. J Virol 73(3):1964–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Piguet V, Wan L, Borel C, Mangasarian A, Demaurex N, Thomas G, Trono D (2000) HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes. Nat Cell Biol 2(3):163–167. doi:10.1038/35004038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Riggs NL, Craig HM, Pandori MW, Guatelli JC (1999) The dileucine-based sorting motif in HIV-1 Nef is not required for down-regulation of class I MHC. Virology 258(2):203–207. doi:10.1006/viro.1999.9736

    Article  CAS  PubMed  Google Scholar 

  19. Greenberg ME, Iafrate AJ, Skowronski J (1998) The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 17(10):2777–2789. doi:10.1093/emboj/17.10.2777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lewis MJ, Lee P, Ng HL, Yang OO (2012) Immune selection in vitro reveals human immunodeficiency virus type 1 Nef sequence motifs important for its immune evasion function in vivo. J Virol 86(13):7126–7135. doi:10.1128/JVI.00878-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schaefer MR, Wonderlich ER, Roeth JF, Leonard JA, Collins KL (2008) HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 4(8):e1000131. doi:10.1371/journal.ppat.1000131

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kirchhoff F, Schindler M, Bailer N, Renkema GH, Saksela K, Knoop V, Muller-Trutwin MC, Santiago ML, Bibollet-Ruche F, Dittmar MT, Heeney JL, Hahn BH, Munch J (2004) Nef proteins from simian immunodeficiency virus-infected chimpanzees interact with p21-activated kinase 2 and modulate cell surface expression of various human receptors. J Virol 78(13):6864–6874. doi:10.1128/JVI.78.13.6864-6874.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G (2002) HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111(6):853–866

    Article  CAS  PubMed  Google Scholar 

  24. Saksela K, Cheng G, Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 14(3):484–491

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Iijima S, Lee YJ, Ode H, Arold ST, Kimura N, Yokoyama M, Sato H, Tanaka Y, Strebel K, Akari H (2012) A noncanonical mu-1A-binding motif in the N terminus of HIV-1 Nef determines its ability to downregulate major histocompatibility complex class I in T lymphocytes. J Virol 86(7):3944–3951. doi:10.1128/JVI.06257-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Altfeld M, Kalife ET, Qi Y, Streeck H, Lichterfeld M, Johnston MN, Burgett N, Swartz ME, Yang A, Alter G, Yu XG, Meier A, Rockstroh JK, Allen TM, Jessen H, Rosenberg ES, Carrington M, Walker BD (2006) HLA Alleles Associated with Delayed Progression to AIDS Contribute Strongly to the Initial CD8(+) T Cell Response against HIV-1. PLoS Med 3(10):e403. doi:10.1371/journal.pmed.0030403

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, Rathnavalu P, Moore C, Pfafferott KJ, Hilton L, Zimbwa P, Moore S, Allen T, Brander C, Addo MM, Altfeld M, James I, Mallal S, Bunce M, Barber LD, Szinger J, Day C, Klenerman P, Mullins J, Korber B, Coovadia HM, Walker BD, Goulder PJ (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432(7018):769–775. doi:10.1038/nature03113

    Article  CAS  PubMed  Google Scholar 

  28. Goulder PJ, Watkins DI (2004) HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4(8):630–640. doi:10.1038/nri1417

    Article  CAS  PubMed  Google Scholar 

  29. Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, Strick D, Johnston MN, Corcoran C, Wurcel AG, Fitzpatrick CA, Feeney ME, Rodriguez WR, Basgoz N, Draenert R, Stone DR, Brander C, Goulder PJR, Rosenberg ES, Altfeld M, Walker BD (2003) Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77(3):2081–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Betts MR, Ambrozak DR, Douek DC, Bonhoeffer S, Brenchley JM, Casazza JP, Koup RA, Picker LJ (2001) Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75(24):11983–11991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lichterfeld M, Kaufmann DE, Yu XG, Mui SK, Addo MM, Johnston MN, Cohen D, Robbins GK, Pae E, Alter G, Wurcel A, Stone D, Rosenberg ES, Walker BD, Altfeld M (2004) Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J Exp Med 200(6):701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lewis MJ, Balamurugan A, Ohno A, Kilpatrick S, Ng HL, Yang OO (2008) Functional adaptation of Nef to the immune milieu of HIV-1 infection in vivo. J Immunol 180(6):4075–4081. doi:10.4049/jimmunol.180.6.4075

    Article  CAS  PubMed  Google Scholar 

  33. Mwimanzi P, Markle TJ, Ogata Y, Martin E, Tokunaga M, Mahiti M, Kuang XT, Walker BD, Brockman MA, Brumme ZL, Ueno T (2013) Dynamic range of Nef functions in chronic HIV-1 infection. Virology 439(2):74–80. doi:10.1016/j.virol.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  34. Carl S, Greenough TC, Krumbiegel M, Greenberg M, Skowronski J, Sullivan JL, Kirchhoff F (2001) Modulation of different human immunodeficiency virus type 1 Nef functions during progression to AIDS. J Virol 75(8):3657–3665. doi:10.1128/jvi.75.8.3657-3665.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Geffin R, Wolf D, Müller R, Hill MD, Stellwag E, Freitag M, Sass G, Scott GB, Baur AS (2000) Functional and structural defects in HIV type 1 nef genes derived from pediatric long-term survivors. AIDS Res Hum Retroviruses 16(17):1855–1868. doi:10.1089/08892220050195810

    Article  CAS  PubMed  Google Scholar 

  36. Kirchhoff F, Easterbrook PJ, Douglas N, Troop M, Greenough TC, Weber J, Carl S, Sullivan JL, Daniels RS (1999) Sequence variations in human immunodeficiency virus type 1 Nef are associated with different stages of disease. J Virol 73(7):5497–5508

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Mwimanzi P, Markle T, Martin E, Ogata Y, Kuang X, Tokunaga M, Mahiti M, Pereyra F, Miura T, Walker B, Brumme Z, Brockman M, Ueno T (2013) Attenuation of multiple Nef functions in HIV-1 elite controllers. Retrovirology 10(1):1. doi:10.1186/1742-4690-10-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ueno T, Motozono C, Dohki S, Mwimanzi P, Rauch S, Fackler OT, Oka S, Takiguchi M (2008) CTL-mediated selective pressure influences dynamic evolution and pathogenic functions of HIV-1 Nef. J Immunol 180(2):1107–1116

    Article  CAS  PubMed  Google Scholar 

  39. Hattori J, Shiino T, Gatanaga H, Yoshida S, Watanabe D, Minami R, Sadamasu K, Kondo M, Mori H, Ueda M, Tateyama M, Ueda A, Kato S, Ito T, Oie M, Takata N, Hayashida T, Nagashima M, Matsuda M, Ibe S, Ota Y, Sasaki S, Ishigatsubo Y, Tanabe Y, Koga I, Kojima Y, Yamamoto M, Fujita J, Yokomaku Y, Koike T, Shirasaka T, Oka S, Sugiura W (2010) Trends in transmitted drug-resistant HIV-1 and demographic characteristics of newly diagnosed patients: nationwide surveillance from 2003 to 2008 in Japan. Antiviral Research 88(1):72–79. doi:10.1016/j.antiviral.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  40. Weniger BG, Takebe Y, Ou CY, Yamazaki S (1994) The molecular epidemiology of HIV in Asia. AIDS 8(Suppl 2):S13–28

    PubMed  Google Scholar 

  41. Itoh Y, Mizuki N, Shimada T, Azuma F, Itakura M, Kashiwase K, Kikkawa E, Kulski JK, Satake M, Inoko H (2005) High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics 57(10):717–729. doi:10.1007/s00251-005-0048-3

    Article  CAS  PubMed  Google Scholar 

  42. Chikata T, Carlson JM, Tamura Y, Borghan MA, Naruto T, Hashimoto M, Murakoshi H, Le AQ, Mallal S, John M, Gatanaga H, Oka S, Brumme ZL, Takiguchi M (2014) Host-specific adaptation of HIV-1 subtype B in the Japanese population. J Virol 88(9):4764–4775. doi:10.1128/jvi.00147-14

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hasan Z, Carlson JM, Gatanaga H, Le AQ, Brumme CJ, Oka S, Brumme ZL, Ueno T (2012) Minor contribution of HLA class I-associated selective pressure to the variability of HIV-1 accessory protein Vpu. Biochem Biophys Res Commun 421(2):291–295. doi:10.1016/j.bbrc.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  44. Ueno T, Idegami Y, Motozono C, Oka S, Takiguchi M (2007) Altering effects of antigenic variations in HIV-1 on antiviral effectiveness of HIV-specific CTLs. J Immunol 178(9):5513–5523

    Article  CAS  PubMed  Google Scholar 

  45. Sanger F, Nicklen S, Coulson AR (1992) DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24:104–108

    CAS  PubMed  Google Scholar 

  46. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  47. Mwimanzi P, Markle TJ, Martin E, Ogata Y, Kuang XT, Tokunaga M, Mahiti M, Pereyra F, Miura T, Walker BD, Brumme ZL, Brockman MA, Ueno T (2013) Attenuation of multiple Nef functions in HIV-1 elite controllers. Retrovirology 10:1. doi:10.1186/1742-4690-10-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mwimanzi P, Markle TJ, Ueno T, Brockman MA (2012) Human leukocyte antigen (HLA) class I down-regulation by human immunodeficiency virus type 1 negative factor (HIV-1 Nef): what might we learn from natural sequence variants? Viruses 4(9):1711–1730. doi:10.3390/v4091711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Williams M, Roeth JF, Kasper MR, Filzen TM, Collins KL (2005) Human immunodeficiency virus type 1 Nef domains required for disruption of major histocompatibility complex class I trafficking are also necessary for coprecipitation of Nef with HLA-A2. J Virol 79(1):632–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Turk G, Gundlach S, Carobene M, Schindler M, Salomon H, Benaroch P (2009) Single Nef proteins from HIV type 1 subtypes C and F fail to upregulate invariant chain cell surface expression but are active for other functions. AIDS Res Hum Retroviruses 25(3):285–296. doi:10.1089/aid.2008.0132

    Article  CAS  PubMed  Google Scholar 

  51. Specht A, DeGottardi MQ, Schindler M, Hahn B, Evans DT, Kirchhoff F (2008) Selective downmodulation of HLA-A and -B by Nef alleles from different groups of primate lentiviruses. Virology 373(1):229–237. doi:10.1016/j.virol.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  52. Heigele A, Schindler M, Gnanadurai CW, Leonard JA, Collins KL, Kirchhoff F (2012) Down-modulation of CD8alphabeta is a fundamental activity of primate lentiviral Nef proteins. J Virol 86(1):36–48. doi:10.1128/JVI.00717-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mann JK, Chopera D, Omarjee S, Kuang XT, Le AQ, Anmole G, Danroth R, Mwimanzi P, Reddy T, Carlson J, Radebe M, Goulder PJR, Walker BD, Abdool Karim S, Novitsky V, Williamson C, Brockman MA, Brumme ZL, Ndung’u T (2014) Nef-mediated down-regulation of CD4 and HLA class I in HIV-1 subtype C infection: association with disease progression and influence of immune pressure. Virology 468–470:214–225. doi:10.1016/j.virol.2014.08.009

    Article  PubMed  Google Scholar 

  54. Mann J, Byakwaga H, Kuang X, Le A, Brumme C, Mwimanzi P, Omarjee S, Martin E, Lee G, Baraki B, Danroth R, McCloskey R, Muzoora C, Bangsberg D, Hunt P, Goulder P, Walker B, Harrigan P, Martin J, Ndung’u T, Brockman M, Brumme Z (2013) Ability of HIV-1 Nef to downregulate CD4 and HLA class I differs among viral subtypes. Retrovirology 10(1):100. doi:10.1186/1742-4690-10-100

    Article  PubMed Central  PubMed  Google Scholar 

  55. Rajapaksa US, Li D, Peng YC, McMichael AJ, Dong T, Xu XN (2012) HLA-B may be more protective against HIV-1 than HLA-A because it resists negative regulatory factor (Nef) mediated down-regulation. Proc Natl Acad Sci USA 109(33):13353–13358. doi:10.1073/pnas.1204199109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Mwimanzi P, Hasan Z, Hassan R, Suzu S, Takiguchi M, Ueno T (2011) Effects of naturally-arising HIV Nef mutations on cytotoxic T lymphocyte recognition and Nef’s functionality in primary macrophages. Retrovirology 8(1):50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Brumme Z, John M, Carlson J, Brumme C, Chan D, Brockman M, Swenson L, Tao I, Szeto S, Rosato P (2009) HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. PLoS One 4:e6687

    Article  PubMed Central  PubMed  Google Scholar 

  58. Brumme ZL, Brumme CJ, Heckerman D, Korber BT, Daniels M, Carlson J, Kadie C, Bhattacharya T, Chui C, Szinger J, Mo T, Hogg RS, Montaner JS, Frahm N, Brander C, Walker BD, Harrigan PR (2007) Evidence of differential HLA class I-mediated viral evolution in functional and accessory/regulatory genes of HIV-1. PLoS Pathog 3(7):e94. doi:10.1371/journal.ppat.0030094

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ezinne K. Okoro for helpful discussion. This study was supported by a grant-in-aid for scientific research from the Ministry of Education, Science, Sports, and Culture (MEXT) of Japan and by a grant-in-aid for AIDS research from the Ministry of Health, Labor, and Welfare of Japan. SCM and FM were supported by a scholarship from the International Priority Graduate Programs, Advanced Graduate Courses for International Students (Doctoral Course), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Ueno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meribe, S.C., Hasan, Z., Mahiti, M. et al. Association between a naturally arising polymorphism within a functional region of HIV-1 Nef and disease progression in chronic HIV-1 infection. Arch Virol 160, 2033–2041 (2015). https://doi.org/10.1007/s00705-015-2480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2480-5

Keywords

Navigation