Skip to main content

Advertisement

Log in

Altered splenic miRNA expression profile in H1N1 swine influenza

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated the key regulatory roles played by microRNAs (miRNAs) in influenza virus-host interactions. To gain more insight into the contribution of miRNAs to the host immune response, spleen tissues from mice infected with A/Swine/GD/2/12 (H1N1) virus were harvested 5 days postinfection, and miRNA deep sequencing was performed. The results showed that 50 miRNAs were modulated. Interestingly, pathway analysis of miRNAs and targets showed that upregulated miR-124-3p interacts with innate immune-related pathways such as the Toll-like receptor pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway and JAK-STAT signaling pathway, and this might play a major role in the anti-inflammatory response. Further understanding of the roles played by these miRNAs in influenza virus infection will provide new insights into host-pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li Y, Chan EY, Li J, Ni C, Peng X, Rosenzweig E, Tumpey TM, Katze MG (2010) MiRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84:3023–3032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125

    Article  CAS  PubMed  Google Scholar 

  3. Li Y, Li J, Belisle S, Baskin CR, Tumpey TM, Katze MG (2011) Differential miRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology 421:105–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zhao Y, Srivastava D (2007) A developmental view of miRNA function. Trends Biochem Sci 32:189–197

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP (2004) MiRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  6. He L, Hannon GJ (2004) MiRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  7. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  PubMed  Google Scholar 

  8. Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F, Croce CM, Brunetti E, Grignani F, Peschle C (2007) MiRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787

    Article  CAS  PubMed  Google Scholar 

  9. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C (2005) MiRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102:18081–18086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. He L, He X, Lowe SW, Hannon GJ (2007) miRNAs join the p53 network–another piece in the tumour-suppression puzzle. Nat Rev Cancer 7:819–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Song L, Liu H, Gao S, Jiang W, Huang W (2010) Cellular miRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 84:8849–8860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Loveday EK, Svinti V, Diederich S, Pasick J, Jean F (2012) Temporal- and strain-specific host miRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection. J Virol 86:6109–6122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rogers JV, Price JA, Wendling MQ, Long JP, Bresler HS (2012) Preliminary miRNA analysis in lung tissue to identify potential therapeutic targets against H5N1 infection. Viral Immunol 25:3–11

    CAS  PubMed  Google Scholar 

  14. Skovgaard K, Cirera S, Vasby D, Podolska A, Breum SØ, Dürrwald R, Schlegel M, Heegaard PM (2013) Expression of innate immune genes, proteins and miRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2). Innate Immun 19:531–544

    Article  PubMed  Google Scholar 

  15. Wang Y, Brahmakshatriya V, Lupiani B, Reddy SM, Soibam B, Benham AL, Gunaratne P, Liu HC, Trakooljul N, Ing N, Okimoto R, Zhou H (2012) Integrated analysis of miRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics 13:278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM, Yoon BJ, Gunaratne PH, Kim JH, Chen R, Wang J, Zhou H (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10:512

    Article  PubMed Central  PubMed  Google Scholar 

  17. Terrier O, Textoris J, Carron C, Marcel V, Bourdon JC, Rosa-Calatrava M (2013) Host miRNA molecular signatures associated with human H1N1 and H3N2 influenza A viruses reveal an unanticipated antiviral activity for miR-146a. J Gen Virol 94:985–995

    Article  CAS  PubMed  Google Scholar 

  18. Barnard DL (2009) Animal models for the study of influenza pathogenesis and therapy. Antiviral Res 82:A110–A122. doi:10.1016/j.antiviral02.190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang L, Liu H, Li D, Chen H (2011) Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genom 12:154

    Article  CAS  Google Scholar 

  20. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  21. Kumar H, Kawai T, Akira S (2009) Pathogen recognition in the innate immune response. Biochem J 420:1–16

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi T, Walsh MC, Choi Y (2004) The role of TRAF6 in signal transduction and the immune response. Microbes Infect 6:1333–1338

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Li Q, Gui H, Xu DP, Yang YL, Su DF, Liu X (2013) MiRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23:1270–1283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6:844–851

    Article  PubMed  Google Scholar 

  25. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 4(21):384–388

    Article  Google Scholar 

  27. Takeuchi K, Ito F (2004) Suppression of adriamycin-induced apoptosis by sustained activation of the phosphatidylinositol-3′-OH kinase-Akt pathway. J Biol Chem 279:892–900

    Article  CAS  PubMed  Google Scholar 

  28. Yu HG, Ai YW, Yu LL, Zhou XD, Liu J, Li JH, Xu XM, Liu S, Chen J, Liu F, Qi YL, Deng Q, Cao J, Liu SQ, Luo HS, Yu JP (2008) Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer 122:433–443

    Article  CAS  PubMed  Google Scholar 

  29. de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin O, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y (2010) Epigenetically deregulated miRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 70:9175–9184

    Article  Google Scholar 

  30. Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, Yao H, Liu X, Ke Y, Si J, Zhou T (2010) MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 20:784–793

    Article  CAS  PubMed  Google Scholar 

  31. Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M, Moriyama M (2010) MiRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 70:2339–2349

    Article  CAS  PubMed  Google Scholar 

  32. Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM (2010) Relation between miRNA expression and progression and prognosis of gastric cancer: a miRNA expression analysis. Lancet Oncol 11:136–146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the College of Veterinary Medicine of South China Agricultural University and University-Based Key Laboratory of Preventive Veterinary Medicine of Foshan University in Guangdong Province.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihong Zhang.

Additional information

L. Huang and J. Ma contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Ma, J., Sun, Y. et al. Altered splenic miRNA expression profile in H1N1 swine influenza. Arch Virol 160, 979–985 (2015). https://doi.org/10.1007/s00705-015-2351-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2351-0

Keywords

Navigation