Skip to main content

Advertisement

Log in

Multiplex PCR assay for the rapid identification of human papillomavirus genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 in clinical samples

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The causal association between persistent human papillomavirus (HPV) infection and cervical cancer has lead to the development of a variety of molecular assays for HPV detection. The present study focused on the development of a simple, sensitive and cost-effective HPV genotyping method based on multiplex PCR methodology that could be easily performed in small laboratories. Three multiplex PCR assays were developed to identify the HPV genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 together with an internal control. The method was established by designing nine type-specific primer sets that target conserved regions of the L1 gene. The assay was applied using HPV-positive cervical specimens, and cloning and sequencing of all of the amplicons that were generated were performed to examine the specificity of the newly designed primers. Moreover, an experimental cutoff value was determined through reconstitution experiments using HPV DNA plasmids. Amplicons of expected size were obtained, while cloning and sequencing of PCR products confirmed the genomic specificity of the amplicons. The sensitivity of this method was determined to be 10 copies of each individual HPV genotype per test. Multiple and single HPV infections were documented in 42.2 % and 57.8 % of cervical specimens, respectively. The most prevalent HPV genotype was HPV16, followed by HPV18, HPV66 and HPV51. The present multiplex PCR assay is a simple method with high specificity and sensitivity that can be applied in clinical or epidemiological analyses for rapid identification of the most clinically important HPV genotypes present in cervical intraepithelial neoplasias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M, Franceschi S (2012) Global burden of human papillomavirus and related diseases. Vaccine 5:F12–F23

    Article  Google Scholar 

  3. Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJ, Meijer CJ, International Agency for Research on Cancer Multicenter Cervical Cancer Study Group (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    Article  PubMed  Google Scholar 

  4. Zur Hausen H (1996) Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta 1288:F55–F78

    PubMed  Google Scholar 

  5. Bernard HU, Calleja-Macias IE, Dunn ST (2006) Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer 118:1071–1076

    Article  CAS  PubMed  Google Scholar 

  6. Bernard HU, Burk RD, Chen Z, van Doorslaer K, Hausen H, de Villiers EM (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. de Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur Hauzen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  8. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F et al (2009) A review of human carcinogens–Part B: biological agents. The lancet oncology 10:321–322

    Article  PubMed  Google Scholar 

  9. Schiffman M, Clifford G, Buonaguro FM (2009) Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect Agents Cancer 4:8

    Article  PubMed Central  PubMed  Google Scholar 

  10. Schiffman M, Herrero R, Desalle R, Hildesheim A, Wacholder S, Rodriguez AC et al (2005) The carcinogenicity of human papillomavirus types reflects viral evolution. Virology 337:76–84

    Article  CAS  PubMed  Google Scholar 

  11. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA (2012) The biology and life-cycle of human papillomaviruses. Vaccine 5:F55–F70

    Article  Google Scholar 

  12. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE et al (2010) Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 11:1048–1056

    Article  PubMed  Google Scholar 

  13. Li N, Franceschi S, Howell-Jones R, Snijders PJ, Clifford GM (2011) Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: Variation by geographical region, histological type and year of publication. Int J Cancer 128:927–935

    Article  CAS  PubMed  Google Scholar 

  14. Castle PE, de Sanjosé S, Qiao YL, Belinson JL, Lazcano-Ponce E, Kinney W (2012) Introduction of human papillomavirus DNA screening in the world: 15 years of experience. Vaccine 5:F117–F122

    Article  Google Scholar 

  15. Cuzick J, Szarewski A, Mesher D, Cadman L, Austin J, Perryman K, Ho L, Terry G, Sasieni P, Dina R, Soutter WP (2008) Long-term follow-up of cervical abnormalities among women screened by HPV testing and cytology-Results from the Hammersmith study. Int J Cancer 122:2294–2300

    Article  CAS  PubMed  Google Scholar 

  16. Abreu AL, Souza RP, Gimenes F, Consolaro ME (2012) A review of methods for detect human Papillomavirus infection. Virol J 9:262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Souho T, Bennani B (2014) Oncogenic human papillomavirus genotyping by multiplex PCR and fragment analysis. J Virol Methods 196:45–49

    Article  CAS  PubMed  Google Scholar 

  18. Weyn C, Boulenouar S, Mathys V, Vanhoolandt J, Bernis A, Fontaine V, RIIP and INCTR Workshop Study Group (2007) Detection of human papillomavirus types 45 and 51 by type-specific polymerase chain reaction. J Virol Methods 146:405–408

    Article  CAS  PubMed  Google Scholar 

  19. Romero-Pastrana F (2012) Detection and typing of human papilloma virus by multiplex PCR with type-specific primers. ISRN Microbiol 2012:186915

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lin CY, Chao A, Yang YC, Chou HH, Ho CM, Lin RW, Chang TC et al (2008) Human papillomavirus typing with a polymerase chain reaction-based genotyping array compared with type-specific PCR. J Clin Virol 42:361–367

    Article  CAS  PubMed  Google Scholar 

  21. de-Roda HA, Walboomers JM, van-den BA, Meijer CJ, Snijders PJ (1995) The use of general primers GP5 and GP6 elongated at their 3_ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 76:1057–1062

    Article  Google Scholar 

  22. Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlee F, Hildesheim A, Schiffman MH, Scott DR, Apple RJ (2000) Improved amplification of genital human papillomaviruses. J. Clin. Microbiol 38:357–361

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Karlsen F, Kalantari M, Jenkins A, Pettersen E, Kristensen G, Holm R, Johansson B, Hagmar B (1996) Use of multiple PCR primer sets for optimal detection of human papillomavirus. J Clin Microbiol 34:2095–2100

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kleter B, van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, ter Schegget J, Lindeman J, ter Harmsel B, Burger M, Quint W (1999) Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol 37:2508–2517

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Schmitt M, Bravo IG, Snijders PJ, Gissmann L, Pawlita M, Waterboer T (2006) Bead-based multiplex genotyping of human papillomaviruses. J. Clin. Microbiol 44:504–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fontaine V, Mascaux C, Weyn C, Bernis A, Celio N, Lefèvre P, Kaufman L, Garbar C (2007) Evaluation of combined general primer-mediated PCR sequencing and type-specific PCR strategies for determination of human papillomavirus genotypes in cervical cell specimens. J Clin Microbiol 45:928–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Boulet GA, Micalessi IM, Horvath CA, Benoy IH, Depuydt CE, Bogers JJ (2010) Nucleic acid sequence-based amplification assay for human papillomavirus mRNA detection and typing: evidence for DNA amplification. J Clin Microbiol 48:2524–2529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Casas I, Powell L, Klapper PE, Cleator GM (1995) New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay. J Virol Methods 53:25–36

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Wang W, Si M, Han L, Gao Q, Luo A, Li Y, Lu Y, Wang S, Ma D (2008) The physical state of HPV16 infection and its clinical significance in cancer precursor lesion and cervical carcinoma. J Cancer Res Clin Oncol 134:1355–1361

    Article  PubMed  Google Scholar 

  30. Sotlar K, Diemer D, Dethleffs A, Hack Y, Stubner A, Vollmer N, Menton S, Menton M, Dietz K, Wallwiener D, Kandolf R, Bültmann B (2004) Detection and typing of human papillomavirus by e6 nested multiplex PCR. J Clin Microbiol 42:3176–3184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  33. Torres M, Fraile L, Echevarria J, Hernandez Novoa B, Ortiz M (2012) Human papillomavirus (HPV) genotyping: automation and application in routine laboratory testing. Open Virol J 6:144–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Fuessel Haws AL, He Q, Rady PL, Zhang L, Grady J, Hughes TK, Stisser K, Konig R, Tyring SK (2004) Nested PCR with the PGMY09/11 and GP5(+)/6(+) primer sets improves detection of HPV DNA in cervical samples. J Virol Methods 122:87–93

    Article  CAS  PubMed  Google Scholar 

  35. Maver PJ, Poljak M, Seme K, Kocjan BJ (2010) Detection and typing of low-risk human papillomavirus genotypes HPV 6, HPV 11, HPV 42, HPV 43 and HPV 44 by polymerase chain reaction and restriction fragment length polymorphism. J Virol Methods 169:215–218

    Article  CAS  PubMed  Google Scholar 

  36. Naqvi SH, Wajid S, Mitra AB (2004) Restriction fragment length polymorphism of L1 amplicon using Rsa 1 detects five different human papillomavirus types and their co-infections among women attending a gynaecological outpatient department. J Virol Methods 117:91–95

    Article  CAS  PubMed  Google Scholar 

  37. Shen-Gunther J, Rebeles J (2013) Genotyping human papillomaviruses: development and evaluation of a comprehensive DNA microarray. Gynecol Oncol 128:433–441

    Article  CAS  PubMed  Google Scholar 

  38. Militello V, Lavezzo E, Costanzi G, Franchin E, Di Camillo B, Toppo S, Palù G, Barzon L (2013) Accurate human papillomavirus genotyping by 454 pyrosequencing. Clin Microbiol Infect 19:E428–E434

    Article  CAS  PubMed  Google Scholar 

  39. Ozaki S, Kato K, Abe Y, Hara H, Kubota H, Kubushiro K, Kawahara E, Inoue M (2014) Analytical performance of newly developed multiplex human papillomavirus genotyping assay using Luminex xMAP™ technology (Mebgen™ HPV Kit). J Virol Methods 204:73–80

    Article  CAS  PubMed  Google Scholar 

  40. Depuydt CE, Boulet GA, Horvath CA, Benoy IH, Vereecken AJ, Bogers JJ (2007) Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J Cell Mol Med 11:881–891

    Article  CAS  PubMed  Google Scholar 

  41. Shah SD, Doorbar J, Goldstein RA (2010) Analysis of host-parasite incongruence in papillomavirus evolution using importance sampling. Mol Biol Evol 27:1301–1314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. García-Vallvé S, Alonso A, Bravo IG (2005) Papillomaviruses: different genes have different histories. Trends Microbiol 13:514–521

    Article  PubMed  Google Scholar 

  43. Trottier H, Mahmud S, Costa MC, Sobrinho JP, Duarte-Franco E, Rohan TE, Ferenczy A, Villa LL, Franco EL (2006) Human papillomavirus infections with multiple types and risk of cervical neoplasia. Cancer Epidemiol Biomarkers Prev 15:1274–1280

    Article  CAS  PubMed  Google Scholar 

  44. Chaturvedi AK, Katki HA, Hildesheim A, Rodríguez AC, Quint W, Schiffman M, Van Doorn LJ, Porras C, Wacholder S, Gonzalez P, Sherman ME, Herrero R, CVT Group (2011) Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease. J Infect Dis 203:910–920

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dickson EL, Vogel RI, Geller MA, Downs LS Jr (2014) Cervical cytology and multiple type HPV infection: a study of 8182 women ages 31-65. Gynecol Oncol 133:405–408

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. E. Panotopoulou, Papanicolaou Research Centre of Oncology and Experimental Surgery, Anticancer Oncology Hospital of Athens “St Savvas”, Athens, Greece, for providing the clinical samples and for valuable discussions. This work was supported by a research grant from the Postgraduate Programme ‘Applications of Molecular Biology-Genetics. Diagnostic Biomarkers’, code 3817, of the University of Thessaly, School of Health Sciences, Department of Biochemistry and Biotechnology.

Conflict of interest

All authors declare that they have no conflicting or dual interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Markoulatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsakogiannis, D., Diamantidou, V., Toska, E. et al. Multiplex PCR assay for the rapid identification of human papillomavirus genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 in clinical samples. Arch Virol 160, 207–214 (2015). https://doi.org/10.1007/s00705-014-2261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2261-6

Keywords

Navigation