Skip to main content
Log in

Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In a virus-infected plant, small interfering RNAs (siRNAs) corresponding to the viral genome form a large proportion of the small RNA population. It is possible to reassemble significant portions of the virus sequence from overlapping siRNA sequences and use these to identify the virus. We tested this technique with a resistance-breaking and a non-resistance-breaking strain of tomato spotted wilt virus (TSWV). We were able to assemble contigs covering 99% of the genomes of both viruses. The abundance of TSWV siRNAs allowed us to detect TSWV at early time points before the onset of symptoms, at levels too low for conventional detection. Combining traditional and bioinformatic detection methods, we also measured how replication of the resistance-breaking strain differed from the non-resistance-breaking strain in susceptible and resistant tomato varieties. We repeated this technique in identification of a squash-infecting geminivirus and also used it to identify an unspecified tospovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adkins S (2000) Tomato spotted wilt virus-positive steps towards negative success. Mol Plant Pathol 1(3):151–157

    Article  PubMed  CAS  Google Scholar 

  2. Groves RL, Walgenbach JF, Moyer JW, Kennedy GG (2001) Overwintering of Frankliniella fusca (Thysanoptera: Thripidae) on winter annual weeds infected with Tomato spotted wilt virus and patterns of virus movement between susceptible weed hosts. Phytopathology 91(9):891–899

    Article  PubMed  CAS  Google Scholar 

  3. German TL, Ullman DE, Moyer JW (1992) Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu Rev Phytopathol 30:315–348

    Article  PubMed  CAS  Google Scholar 

  4. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T (2002) Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532(1–2):75–79

    Article  PubMed  CAS  Google Scholar 

  5. German TL, Adkins S, Witherell A, Richmond KE, Knaack WR, Willis DK (1995) Infection of Arabidopsis Thaliana Ecotype Columbia by tomato spotted wilt virus. Plant Mol Biol Rep 13(2):110–117

    Article  Google Scholar 

  6. Boiteux LS, Ávila AC (1994) Inheritance of a resistance specific to tomato spotted wilt tospovirus in Capsicum chinense ‘PI 159236’. Euphytica 75(1):139–142

    Article  Google Scholar 

  7. Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, Prins M (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed 7(2):151–161

    Article  CAS  Google Scholar 

  8. Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer J (2000) Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microbe Interact 13(6):673–682

    Article  PubMed  CAS  Google Scholar 

  9. Roggero P, Masenga V, Tavella L (2002) Field isolates of Tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Dis 86(9):950–954

    Article  Google Scholar 

  10. Cho JJ, Custer DM, Brommonschenkel SH, Tanksley SD (1996) Conventional breeding: host-plant resistance and the use of molecular markers to develop resistance to tomato spotted wilt virus in vegetables. Acta Hortic 431:367–378

    Google Scholar 

  11. Latham LJ, Jones RAC (1998) Selection of resistance breaking strains of tomato spotted wilt tospovirus. Ann Appl Biol 133(3):385–402

    Article  Google Scholar 

  12. Thomas-Carroll ML, Jones RAC (2003) Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. Ann Appl Biol 142(2):235–243

    Article  Google Scholar 

  13. Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. Mol Plant Microbe Interact 20(5):547–558

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann K, Qiu WP, Moyer JW (2001) Overcoming host- and pathogen-mediated resistance in tomato and tobacco maps to the M RNA of Tomato spotted wilt virus. Mol Plant Microbe Interact 14(2):242–249

    Article  PubMed  CAS  Google Scholar 

  15. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426

    Article  PubMed  CAS  Google Scholar 

  16. Hagen C, Rojas MR, Kon T, Gilbertson RL (2008) Recovery from Cucurbit leaf crumple virus (Family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98(9):1029–1037

    Article  PubMed  CAS  Google Scholar 

  17. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771

    Article  PubMed  CAS  Google Scholar 

  18. Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10(4):537–545

    Article  PubMed  CAS  Google Scholar 

  19. Al Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387(2):395–401

    Article  PubMed  CAS  Google Scholar 

  20. Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Rees DJ, Burger JT (2010) Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology 400(2):157–163

    Google Scholar 

  21. Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW (2010) Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc Natl Acad Sci USA 107(4):1606–1611

    Google Scholar 

  22. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388(1):1–7

    Article  PubMed  CAS  Google Scholar 

  23. Stevens MR, Scott SJ, Gergerich RC (1991) Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59(1):9–17

    Google Scholar 

  24. Tsompana M, Abad J, Purugganan M, Moyer JW (2005) The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Mol Ecol 14(1):53–66

    Article  PubMed  CAS  Google Scholar 

  25. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  PubMed  CAS  Google Scholar 

  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  27. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37(Database issue):D26-31

    Google Scholar 

  28. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  Google Scholar 

  29. Wang XB, Wu Q, Ito T, Cillo F, Li WX, Chen X, Yu JL, Ding SW (2010) RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc Natl Acad Sci USA 107(1):484–489

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Hagen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resources 1-4 Viral genomes assembled from siRNA sequences. In all cases, bases confirmed by siRNA contigs are in capital letters (i.e., A, G, C, T); gaps filled in with a template are in lower case (i.e., a, g, c, t).

Online Resource 1: RB-TSWV genome (TXT 16.2 kb)

Online Resource 2: TSWV genome (TXT 5.10 kb)

Online Resource 3: SLCV genome (TXT 16.2 kb)

Online Resource 4: CaCV genome (TXT 16.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagen, C., Frizzi, A., Kao, J. et al. Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses. Arch Virol 156, 1209–1216 (2011). https://doi.org/10.1007/s00705-011-0979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0979-y

Keywords

Navigation